Advertisement

On the Development and Application of Sliding Mode Observers

  • Christopher Edwards
  • Sarah K. Spurgeon
  • Chee Pin Tan
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 274)

Abstract

This chapter will provide a perspective on the development of sliding mode observers for continuous time systems — primarily those which can be well represented as linear systems subject to bounded nonlinearities/uncertainties. This encompasses a wide range of real engineering systems. Sliding mode observers for systems modelled by nonlinear systems, and whose design methodology explicitly exploits the nonlinear system structure, have recently been considered in [1].

Keywords

Linear Matrix Inequality Sliding Mode Switching Function Sensor Fault Mode Observer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbot, J.P., (2001) Sliding mode observers, In Perruquetti W., Barbot J.P., editors, Sliding Modes in Automatic Control, Marcel Dekker.Google Scholar
  2. 2.
    Boyd S.P., El Ghaoui L., Feron E., Balakrishnan V. (1994) Linear Matrix Inequalities in Systems and Control Theory, SIAM: Philadelphia.Google Scholar
  3. 3.
    Brogan W.L., (1991) Modern Control Theory, Prentice Hall, Englewood Cliffs NJ.zbMATHGoogle Scholar
  4. 4.
    Chen J., Patton R.J. (1993) Fault estimation in linear dynamic systems, In Proceedings of the 12th IFAC World Congress, 7:501–504.Google Scholar
  5. 5.
    Chen J., Patton R.J. (1999) Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer Academic Publsihers.Google Scholar
  6. 6.
    Chilali M., Gahinet P. (1996) H design with pole placement constraints: an LMI approach, IEEE Transactions on Automatic Control, 41, 358–367.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dorling C.M., Zinober A.S.I. (1983) A comparative study of the sensitivity of observers, In Proceedings of the IASTED Symposium on Applied Control and Identification-Copenhagen, 6.32–6.38.Google Scholar
  8. 8.
    Drakunov S., Utkin V.I. (1995) Sliding mode observers: tutorial, In Proceedings of the 34th IEEE Conference on Decision and Control, 3376–3378.Google Scholar
  9. 9.
    Edwards C., Spurgeon S.K. (1994) On the development of discontinuous observers, International Journal of Control, 59, 1211–1229.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Edwards C., Spurgeon S.K. (1996) Robust output tracking using a sliding mode controller/observer scheme, International Journal of Control, 64 967–983.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Edwards C., Spurgeon S.K. (1997) Sliding mode output tracking with application to a multivariable high temperature furnace problem, International Journal of Robust and Nonlinear Control, 7, 337–351.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Edwards C., Spurgeon S.K. (1998) Sliding Mode Control: Theory and Applications, Taylor & Francis.Google Scholar
  13. 13.
    Edwards C., Spurgeon S.K. (2000) A sliding mode control observer based FDI scheme for the ship benchmark, European Journal of Control, 6 341–356.Google Scholar
  14. 14.
    Edwards C., Spurgeon S.K., Patton R.J. (2000) Sliding mode observers for fault detection, Automatica, 36, 541–553.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Frank P.M. (1990) Fault diagnosis in dynamic systems using analytical and knowledge based redundancy-a survey and some new results, Automatica, 26, 459–474.zbMATHCrossRefGoogle Scholar
  16. 16.
    Gahinet P., Nemirovski A., Laub A., Chilali M. (1995) LMI Control Toolbox, User Guide, Math Works, Inc.Google Scholar
  17. 17.
    Gutman S., Jury E. (1981) A general theory for matrix root-clustering in subregions of the complex plane, IEEE Transactions on Automatic Control, 26 853–863.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hasakara I., Özgüner U., Utkin V.I. (1998) On sliding mode observers via equivalent control approach, International Journal of Control, 71 1051–1067.CrossRefMathSciNetGoogle Scholar
  19. 19.
    Hashimoto H., Utkin V.I., Xu J.X., Suzuki H., Harashima F. (1990) VSS observers for linear time varying systems, In Proceedings of the 16th Annual Conference of the IEEE Industrial Electronic Society, 34–39.Google Scholar
  20. 20.
    Heck B.S., Yallapragada S.V., Fan M.K.H. (1995) Numerical methods to design the reaching phase of output feedback variable structure control, Automatica, 31 275–279.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hermans F.J.J., Zarrop M.B. (1996) Sliding mode observers for robust sensor monitoring, Proceedings of the 13th IFAC World Congress, 211–216.Google Scholar
  22. 22.
    Herrmann G., Spurgeon S.K., Edwards C. (2001) A robust sliding mode output tracking control for a class of relative degree zero and non-minimum phase plants: a chemical process application, to appear in International Journal of Control.Google Scholar
  23. 23.
    Izadi-Zamanabadi R., Blanke M. (1997) A ship propulsion system as a benchmark for fault-tolerant control, In Proceedings of the IFAC Symposium-Safe-process’ 97, 1074–1081.Google Scholar
  24. 24.
    Luenberger D.G. (1971) An introduction to observers, IEEE Transactions on Automatic Control, 16 596–602.CrossRefGoogle Scholar
  25. 25.
    Niemann H. (2000) Editorial, special issue on fault detection and identification, International Journal of Robust and Nonlinear Control, 10 1153–1154.zbMATHCrossRefGoogle Scholar
  26. 26.
    Patton R.J., Frank P.M., Clark R.N. (1989) Fault Diagnosis in Dynamic Systems: Theory and Application, Prentice Hall, New York.Google Scholar
  27. 27.
    Slotine J.J.E., Hedrick J.K., Misawa E.A. (1987) On sliding observers for nonlinear systems, Transactions of the ASME: Journal of Dynamic Systems, Measurement and Control, 109 245–252.zbMATHCrossRefGoogle Scholar
  28. 28.
    Sreedhar R., Fernández B., Masada G.Y. (1993) Robust fault detection in nonlinear systems using sliding mode observers, In Proceedings of the IEEE Conference on Control Applications, 715–721.Google Scholar
  29. 29.
    Steinberg A., Corless M.J. (1985) Output feedback stabilisation of uncertain dynamical systems, IEEE Transactions on Automatic Control, 30 1025–1027.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Stoustrup J., Grimble M.J. (1997) Integrating control andfault diagnosis: a separation result, In Proceedings IFAC Symposium, Safeprocess’ 97, Hull, 323–328.Google Scholar
  31. 31.
    Tan C.P., Edwards C. (2000) An LMI approach for designing sliding mode observers, In Proceedings of the IEEE Conference of Decision and Control, Sydney.Google Scholar
  32. 32.
    Utkin V.I. (1992) Sliding Modes in Control Optimization, Springer-Verlag, Berlin.zbMATHGoogle Scholar
  33. 33.
    Walcott B.L., Corless M.J., Żak S.H. (1987) Comparative study of nonlinear state observation techniques, International Journal of Control, 45 2109–2132.zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Walcott B.L., Żak S.H. (1987) State observation of nonlinear uncertain dynamical systems, IEEE Transactions on Automatic Control, 32, 166–170.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Christopher Edwards
    • 1
  • Sarah K. Spurgeon
    • 1
  • Chee Pin Tan
    • 1
  1. 1.Department of EngineeringUniversity of LeicesterLeicesterUK

Personalised recommendations