Skip to main content

Multi-recipient Public-Key Encryption with Shortened Ciphertext

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2274)

Abstract

In the trivial n-recipient public-key encryption scheme, a ciphertext is a concatenation of independently encrypted messages for n recipients. In this paper, we say that an n-recipient scheme has a “shortened ciphertext” property if the length of the ciphertext is almost a half (or less) of the trivial scheme and the security is still almost the same as the underlying single-recipient scheme. We first present (multi-plaintext, multi-recipient) schemes with the “shortened ciphertext” property for ElGamal scheme and Cramer-Shoup scheme. We next show (single-plaintext, multi-recipient) hybrid encryption schemes with the “shortened ciphertext” property.

References

  1. O. Baudron, D. Pointcheval and J. Stern: “Extended Notions of Security for Multicast Public Key Cryptosystems”, ICALP’ 2000 (2000)

    Google Scholar 

  2. M. Bellare, A. Boldyreva and S. Micali: “Public-key encryption in a multi-recipient setting: Security proofs and improvements”, Advances in Cryptology-Eurocrypt’ 2000 Proceedings, Lecture Notes in Computer Science Vol.1807, Springer Verlag, pp.259–274 (2000)

    Google Scholar 

  3. M. Bellare and P. Rogaway: “Random oracles are practical: A paradigm for designing efficient protocols”, Proc. of the 1st CCS, pp.62–73, ACM Press, New York, 1993. (http://www-cse.ucsd.edu/users/mihir/crypto2k)

  4. D. Boneh: “Simplified OAEP for the RSA and Rabin Functions”, Advances in Cryptology-Crypto’2001 Proceedings, Lecture Notes in Computer Science Vol.2139, Springer Verlag, pp.275–291 (2001)

    Google Scholar 

  5. D. Bonehand M. Franklin: “An efficient public key traitor tracing scheme”, Advances in Cryptology-Crypto’99 Proceedings, Lecture Notes in Computer Science Vol.1666, Springer Verlag, pp.338–353 (1999)

    Google Scholar 

  6. B. Chor, A. Fiat, and M. Naor, B. Pinkas: “Tracing traitors”, IEEE Trans. on IT, vol.46, no.3, pages 893–910 (2000).

    MATH  CrossRef  Google Scholar 

  7. D. Coppersmith: “Finding a small root of a univariate modular equation”, Advances in Cryptology-Eurocrypt’96 Proceedings, Lecture Notes in Computer Science Vol.1070, Springer Verlag, pp.155–165 (1996)

    Google Scholar 

  8. D. Coppersmith: “Small solutions to polynomial equations, and low exponent RSA vulnerabilities”, Journal of Cryptology, 10, pp.233–260 (1997)

    MATH  CrossRef  MathSciNet  Google Scholar 

  9. R. Cramer and V. Shoup: “A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack”, Advances in Cryptology-Crypto’98 Proceedings, Lecture Notes in Computer Science Vol.1462, Springer Verlag, pp.13–25 (1998)

    Google Scholar 

  10. S. Goldwasser and S. Micali: “Probabilistic encryption”, Journal Computer and System Sciences, vol.28, pp.270–299 (1984).

    MATH  CrossRef  MathSciNet  Google Scholar 

  11. J. Hastad: “Solving simultaneous modular equations of low degree”, SIAM Journal of Computing, vol.17, pp.336–341 (1988).

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. K. Kurosawa and Y. Desmedt: Optimum traitor tracing and asymmetric schemes witharbiter. Advances in Cryptology — Eurocrypt’98, Lecture Notes in Computer Science #1403, Springer Verlag (1999) 145–157

    Google Scholar 

  13. K. Kurosawa and T. Yoshida: “Linear code implies public-key traitor tracing”, PKC’02 (this proceedings)

    Google Scholar 

  14. M. Naor and O. Reingold: “Number theoretic constructions of efficient pseudorandom functions”, FOCS’97, pp.458–467 (1997).

    Google Scholar 

  15. M. Stadler: “Publicly verifiable secret sharing”, Advances in Cryptology-Eurocrypt’96 Proceedings, Lecture Notes in Computer Science Vol.1070, Springer Verlag, pp.190–199 (1996)

    Google Scholar 

  16. Y. Zheng and J. Seberry: “Practical approaches to attaining security against adaptively chosen ciphertext attacks”, Advances in Cryptology-Crypto’92 Proceedings, Lecture Notes in Computer Science Vol.740, Springer Verlag, pp.292–304 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurosawa, K. (2002). Multi-recipient Public-Key Encryption with Shortened Ciphertext. In: Naccache, D., Paillier, P. (eds) Public Key Cryptography. PKC 2002. Lecture Notes in Computer Science, vol 2274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45664-3_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45664-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43168-8

  • Online ISBN: 978-3-540-45664-3

  • eBook Packages: Springer Book Archive