Advertisement

Integral Cryptanalysis

Extended Abstract
  • Lars Knudsen
  • David Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2365)

Abstract

This paper considers a cryptanalytic approach called integral cryptanalysis. It can be seen as a dual to differential cryptanalysis and applies to ciphers not vulnerable to differential attacks. The method is particularly applicable to block ciphers which use bijective components only.

Keywords

Cryptanalysis block ciphers integrals MISTY 

References

  1. 1.
    P. Barreto, V. Rijmen, J. Nakahara Jr., B. Preneel, J. Vandewalle, and H.Y. Kim. “Improved SQUARE attacks against reduced-round HIEROCRYPT”. Fast Software Encryption 2001, Springer-Verlag, to appear.Google Scholar
  2. 2.
    E. Biham, A. Biryukov, A. Shamir, “Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials,” In J. Stern, editor, Advances in Cryptology: EUROCRYPT’99, LNCS 1592, pp. 12–23. Springer Verlag, 1999.Google Scholar
  3. 3.
    E. Biham, A. Shamir, Differential Cryptanalysis of the Data Encryption Standard, Springer-Verlag, 1993.Google Scholar
  4. 4.
    A. Biryukov, A. Shamir, “Structural Cryptanalysis of SASAS, ” Advances in Cryptology-EUROCRYPT 2001, LNCS 2045, Springer-Verlag, pp. 394–405, 2001.CrossRefGoogle Scholar
  5. 5.
    J. Daemen, L. Knudsen, and V. Rijmen. The block cipher Square. In E. Biham, editor, Fast Software Encryption, Fourth International Workshop, Haifa, Israel, January 1997, LNCS 1267, pages 149–165. Springer Verlag, 1997.Google Scholar
  6. 6.
    J. Daemen, L.R. Knudsen, and V. Rijmen, “Linear Frameworks for Block Ciphers,” Designs, Codes and Cryptography, Volume 22, No 1, 2001, pp. 65–87.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Daemen, V. Rijmen, “AES Proposal: Rijndael,” AES Round 1 Technical Evaluation CD-1: Documentation, National Institute of Standards and Technology, Aug 1998.Google Scholar
  8. 8.
    C. D’Halluin, G. Bijnens, V. Rijmen, and B. Preneel. Attack on Six Rounds of Crypton. In L. Knudsen, editor, Fast Software Encryption, Sixth International Workshop, Rome, Italy, March 1999, LNCS 1636, pages 46–59. Springer Verlag, 1999.Google Scholar
  9. 9.
    N. Ferguson, J. Kelsey, B. Schneier, M. Stay, D. Wagner, and D. Whiting. Improved cryptanalysis of Rijndael. In B. Schneier, editor, Fast Software Encryption, 7th International Workshop, FSE 2000, New York, USA, April 2000, LNCS 1978, pages 213–230. Springer Verlag, 2001.CrossRefGoogle Scholar
  10. 10.
    Y. He, S. Qing, “Square Attack on Reduced Camellia Cipher”, ICICS 2001, LNCS 2229, Springer-Verlag.Google Scholar
  11. 11.
    I.N. Herstein, Topics in Algebra, 2nd ed., John Wiley & Sons, 1975.Google Scholar
  12. 12.
    Y. Hu, Y. Zhang, and G. Xiao, “Integral cryptanalysis of SAFER+”, Electronics Letters, vol. 35, (no. 17), IEE, 19 Aug. 1999, p. 1458–1459.CrossRefGoogle Scholar
  13. 13.
    T. Jakobsen and L. Knudsen. The interpolation attack on block ciphers. In E. Biham, editor, Fast Software Encryption, Fourth International Workshop, Haifa, Israel, January 1997, LNCS 1267, pages 28–40. Springer Verlag, 1997.Google Scholar
  14. 14.
    T. Jakobsen, Cryptanalysis of block ciphers with probabilistic non-linear relations of low degree. In H. Krawczyk, editor, Advances in Cryptology: CRYPTO’98, LNCS 1462, pages 212–222. Springer Verlag, 1998.CrossRefGoogle Scholar
  15. 15.
    L.R. Knudsen and T. Berson. Truncated differentials of SAFER. In Gollmann D., editor, Fast Software Encryption, Third International Workshop, Cambridge, UK, February 1996, LNCS 1039, pages 15–26. Springer Verlag, 1995.Google Scholar
  16. 16.
    L.R. Knudsen. Truncated and higher order differentials. In B. Preneel, editor, Fast Software Encryption-Second International Workshop, Leuven, Belgium, LNCS 1008, pages 196–211. Springer Verlag, 1995.Google Scholar
  17. 17.
    L.R. Knudsen, “Block Ciphers: State of the Art”. Copies of transparencies for lecture at the International Course on State of the Art and Evolution of Computer Security and Industrial Cryptography, Katholieke Universiteit Leuven, Belgium, June, 1997.Google Scholar
  18. 18.
    L.R. Knudsen, “A Detailed Analysis of SAFER K”, Journal of Cryptology, vol. 3, no. 4, Springer-Verlag, 2000, pp. 417–436.CrossRefMathSciNetGoogle Scholar
  19. 19.
    U. Kühn. Cryptanalysis of reduced-round MISTY. In B. Pfitzmann, editor, Advances in Cryptology-EUROCRYPT’2001, LNCS 2045, pages 325–339. Springer Verlag, 2001.Google Scholar
  20. 20.
    U. Kühn, “Improved Cryptanalysis of MISTY1,” These proceedings.Google Scholar
  21. 21.
    X. Lai, “Higher Order Derivations and Differential Cryptanalysis,” Communications and Cryptography: Two Sides of One Tapestry, Kluwer Academic Publishers, 1994, pp. 227–233.Google Scholar
  22. 22.
    S. Lucks, “The Saturation Attack—a Bait for Twofish”, Fast Software Encryption 2001, Springer-Verlag, to appear.Google Scholar
  23. 23.
    J.L. Massey. SAFER K-64: A byte-oriented block-ciphering algorithm. In R. Anderson, editor, Fast Software Encryption-Proc. Cambridge Security Workshop, Cambridge, U.K., LNCS 809, pages 1–17. Springer Verlag, 1994.Google Scholar
  24. 24.
    M. Matsui. New block encryption algorithm MISTY. In E. Biham, editor, Fast Software Encryption, Fourth International Workshop, Haifa, Israel, January 1997, LNCS 1267, pages 54–68. Springer Verlag, 1997.Google Scholar
  25. 25.
    J. Nakahara Jr., P.S.L.M. Barreto, B. Preneel, J. Vandewalle, H.Y. Kim, “SQUARE Attacks Against Reduced-Round PES and IDEA Block Ciphers”, IACR Cryptology ePrint Archive, Report 2001/068, 2001.Google Scholar
  26. 26.
    K. Nyberg. Generalized Feistel networks. In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in Cryptology-ASIACRYPT’96, LNCS 1163, pages 91–104. Springer Verlag, 1996.CrossRefGoogle Scholar
  27. 27.
    V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. De Win. The cipher SHARK. In Gollmann D., editor, Fast Software Encryption, Third International Workshop, Cambridge, UK, February 1996, LNCS 1039, pages 99–112. Springer Verlag, 1996.Google Scholar
  28. 28.
    K. Sakurai and Y. Zheng, “On Non-Pseudorandomness from Block Ciphers with Provable Immunity against Linear Cryptanalysis”, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science, Vol. E80-A, No. 1, 1997, pp. 19–24.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Lars Knudsen
    • 1
  • David Wagner
    • 2
  1. 1.Dept. of MathematicsDTULyngbyDenmark
  2. 2.University of California BerkeleyBerkeleyUSA

Personalised recommendations