Skip to main content

Planning with Noisy Actions (Preliminary Report)

  • Conference paper
  • First Online:
AI 2001: Advances in Artificial Intelligence (AI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2256))

Included in the following conference series:

Abstract

Ignoring the noise of physical sensors and effectors has always been a crucial barrier towards the application of high-level, cognitive robotics to real robots. We present a method of solving planning problems with noisy actions. The approach builds on the Fluent Calculus as a standard first-order solution to the Frame Problem. To model noise, a formal notion of uncertainty is incorporated into the axiomatization of state update and knowledge update. The formalism provides the theoretical underpinnings of an extension of the action programming language Flux. Using constraints on real-valued intervals to encode noise, our system allows to solve planning problems for noisy sensors and effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bacchus, J. Halpern, and H. Levesque. Reasoning about noisy sensors and effectors in the situation calculus. Artif. Intell., 111(1–2):171–208, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Baral and T. C. Son. Approximate reasoning about actions in presence of sensing and incomplete information. In Proc. of ILPS, pp. 387–401, 1997. MIT Press.

    Google Scholar 

  3. W. Bibel. Let’s plan it deductively! Artif. Intell., 103(1–2):183–208, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Frühwirth. Theory and practice of constraint handling rules. J. of Logic Programming, 37(1–3):95–138, 1998.

    Article  MATH  Google Scholar 

  5. G. De Giacomo, L. Iocchi, D. Nardi, and R. Rosati. Planning with sensing for a mobile robot. In Proc. of ECP, vol. 1348 of LNAI, pages 158–170. Springer, 1997.

    Google Scholar 

  6. K. Golden and D. Weld. Representing sensing actions: The middle ground revisited. In Proc. of KR, pp. 174–185, 1996. Morgan Kaufmann.

    Google Scholar 

  7. S. Hölldobler and J. Schneeberger. A new deductive approach to planning. New Generation Computing, 8:225–244, 1990.

    Article  MATH  Google Scholar 

  8. G. Lakemeyer. On sensing and off-line interpreting GOLOG. In Logical Foundationsfor Cognitive Agents, pages 173–189. Springer, 1999.

    Google Scholar 

  9. H. Levesque, F. Pirri, and R. Reiter. Foundations for a calculus of situations. Electronic Transactions on Artif. Intell., 3(1–2):159–178, 1998. URL: http://www.ep.liu.se/ea/cis/1998/018/.

    MathSciNet  Google Scholar 

  10. H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A logic programming language for dynamic domains. J. of Logic Programming, 31(1–3):59–83, 1997.

    Article  MATH  Google Scholar 

  11. J. Lobo. COPLAS: A conditional planner with sensing actions. In Cognitive Robotics, vol. FS-98-02 of AAAI Fall Symposia, pp. 109–116. AAAI Press 1998.

    Google Scholar 

  12. J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial intelligence. Machine Intell., 4:463–502, 1969.

    MATH  Google Scholar 

  13. R. Reiter. On knowledge-based programming with sensing in the situation calculus. In Cognitive RoboticsWorks hop at ECAI, pp. 55–61, Berlin, Germany, August 2000.

    Google Scholar 

  14. R. Scherl and H. Levesque. The frame problem and knowledge-producing actions. In Proc. of AAAI, pp. 689–695, 1993.

    Google Scholar 

  15. M. Thielscher. From Situation Calculus to Fluent Calculus: State update axioms as a solution to the inferential frame problem. Artif. Intell., 111(1–2):277–299, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Thielscher. The Fluent Calculus: A Specification Language for Robots with Sensors in Nondeterministic, Concurrent, and Ramifying Environments. Technical Report CL-2000-01, Dept. of Computer Science, Dresden Univ. of Tech., 2000. URL: http://www.cl.inf.tu-dresden.de/~mit/publications/reports/CL-2000-01.pdf.

  17. M. Thielscher. Representing the knowledge of a robot. In Proc. of KR, pp. 109–120, 2000. Morgan Kaufmann.

    Google Scholar 

  18. M. Thielscher. Inferring implicit state knowledge and plans with sensing actions. In Proc. of KI, vol. 2174 of LNAI, pp. 366–380, 2001. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thielscher, M. (2001). Planning with Noisy Actions (Preliminary Report). In: Stumptner, M., Corbett, D., Brooks, M. (eds) AI 2001: Advances in Artificial Intelligence. AI 2001. Lecture Notes in Computer Science(), vol 2256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45656-2_43

Download citation

  • DOI: https://doi.org/10.1007/3-540-45656-2_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42960-9

  • Online ISBN: 978-3-540-45656-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics