Skip to main content

Local Temporal Logic Is Expressively Complete for Cograph Dependence Alphabets

  • Conference paper
  • First Online:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2250))

Abstract

Recently, local logics for Mazurkiewicz traces are of increasing interest. This is mainly due to the fact that the satisfiability problem has the same complexity as in the word case. If we focus on a purely local interpretation of formulae at vertices (or events) of a trace, then the satisfiability problem of linear temporal logics over traces turns out to be PSPACE-complete. But now the dificult problem is to obtain expressive completeness results with respect to first order logic. The main result of the paper shows such an expressive completeness result, if the underlying dependence alphabet is a cograph, i.e., if all traces are series parallel graphs. Moreover, we show that this is the best we can expect in our setting: If the dependence alphabet is not a cograph, then we cannot express all first order properties.

Partial support of EC-FET project IST-1999-29082 (ADVANCE), CEFIPRAIFCPAR Project 2102-1 (ACSMV) and PROCOPE project 00269SD (MoVe) is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R Alur, D. Peled, and W. Penczek. Model-checking of causality properties. In Proceedingss of the Tenth IEEE Symposium on Logic in Computer Science (LICS’95), pages 90–100, 1995.

    Google Scholar 

  2. D.G. Corneil, H. Lerchs, and L.S. Burlingham. Complement reducible graphs. Discrete Applied Mathematics, 3:163–174, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Diekert and P. Gastin. LTL is expressively complete for Mazurkiewicz traces. In Proceedings of ICALP 2000, number 1853 in Lecture Notes in Computer Science, pages 211–222. Springer Verlag, 2000.

    Google Scholar 

  4. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore, 1995.

    Google Scholar 

  5. W. Ebinger and A. Muscholl. Logical definability on infinite traces. Theoretical Computer Science, 154:67–84, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Ebinger. Charakterisierung von Sprachklassen unendlicher Spuren durch Logiken. Dissertation, Institut für Informatik, Universität Stuttgart, 1994.

    Google Scholar 

  7. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Conference Record of the 12th ACM Symposium on Principles of Programming Languages, pages 163–173, Las Vegas, Nev., 1980.

    Google Scholar 

  8. J. G. Henriksen. An expressive extension of TLC. In Proceedings of ASIAN’99, number 1742 in Lecture Notes in Computer Science, pages 126–138. Springer Verlag, 1999.

    Google Scholar 

  9. J. G. Henriksen. Logic and Automata for Verification: Expressiveness and Decidability Issues. PhD thesis, Dept. of Comp. Sci., University of Aarhus, 2000.

    Google Scholar 

  10. T. Jiang and B. Ravikumar. A note on the space complexity of some decision problems fir finite automata. Information Processing Letters, 40:25–31, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, Calif., 1968.

    Google Scholar 

  12. A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

    Google Scholar 

  13. M. Mukund and P. S. Thiagarajan. Linear time temporal logics over Mazurkiewicz traces. In Proceedings of the 21th MFCS, 1996, number 1113 in Lecture Notes in Computer Science, pages 62–92. Springer Verlag, 1996.

    Google Scholar 

  14. P. Niebert. A v-calculus with local views for sequential agents. In Proceedings of the 20th MFCS, 1995, number 969 in Lecture Notes in Computer Science, pages 563–573. Springer Verlag, 1995.

    Google Scholar 

  15. W. Penczek. Temporal logics for trace systems: On automated verification. InternationalJournalof Foundations of Computer Science, 4:31–67, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Ramanujam. Locally linear time temporal logic. In Proceedings of LICS’96, Lecture Notes in Computer Science, pages 118–128, 1996.

    Google Scholar 

  17. P.S. Thiagarajan and I. Walukiewicz. An expressively complete linear time temporal logic for Mazurkiewicz traces. In Proceedings of LICS’97, 1997.

    Google Scholar 

  18. P. S. Thiagarajan. A trace based extension of linear time temporal logic. In Proceedings of LICS’94, pages 438–447, 1994.

    Google Scholar 

  19. M. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Concurrency: Structure versus Automata, number 1043 in Lecture Notes in Computer Science, pages 238–266. Springer Verlag, 1996.

    Google Scholar 

  20. I. Walukiewicz. Dificult con.gurations-on the complexity of LTrL. In Proceedings of ICALP’98, number 1443 in Lecture Notes in Computer Science, pages 140–151. Springer Verlag, 1998.

    Google Scholar 

  21. I. Walukiewicz. Local logics for traces. Journalof Automata, Languages and Combinatorics, 2001. To appear.

    Google Scholar 

  22. I. Walukiewicz. Private communication, 2001.

    Google Scholar 

  23. Th. Wilke. Classifying discrete temporal properties. In Proceedings of STACS’99, number 1563 in Lecture Notes in Computer Science, pages 32–46. Springer Verlag, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diekert, V., Gastin, P. (2001). Local Temporal Logic Is Expressively Complete for Cograph Dependence Alphabets. In: Nieuwenhuis, R., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2001. Lecture Notes in Computer Science(), vol 2250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45653-8_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45653-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42957-9

  • Online ISBN: 978-3-540-45653-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics