Skip to main content

Some Notes on Alternating Optimization

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2275))

Abstract

Let f : ℜs ↦ ℜ be a real-valued scalar field, and let x = (x1,…, xs)T ∈ ℜs be partitioned into t subsets of non-overlapping variables as x = (X1,…,Xt )T, with Xi ∈ ℜp 1, for i = 1,…, t, ∈t i=1pi = s Alternating optimization (AO) is an iterative procedure for minimizing (or maximizing) the function f(x) = f(X1,X2,…,Xt) jointly over all variables by alternating restricted minimizations over the individual subsets of variables X1,…,Xt. AO is the basis for the c-means clustering algorithms (t=2), many forms of vector quantization (t = 2, 3 and 4), and the expectation-maximization (EM) algorithm (t = 4) for normal mixture decomposition. First we review where and how AO fits into the overall optimization landscape. Then we discuss the important theoretical issues connected with the AO approach. Finally, we state (without proofs) two new theorems that give very general local and global convergence and rate of convergence results which hold for all partitionings of x.

Research supported by ONR Grant 00014-96-1-0642.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lloyd, S.P. (1957). Least squares quantization of PCM, [originally an unpublished Bell Labs technical note], reprinted in IEEE Trans. IT, 28, March, 1982, 129–137.

    Google Scholar 

  2. Wolfe, J.H. (1970). Pattern clustering by multivariate mixture analysis, Multivariate Behavioral Research, v. 5, 329–350.

    Article  Google Scholar 

  3. Bezdek, J.C. (1973). Fuzzy Mathematics for Pattern Classification, PhD Thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  4. Bezdek, J.C., Coray, C., Gunderson, R. and Watson, J. (1981). Detection and Characterization of Cluster Substructure II. Fuzzy c-Varieties and Convex Combinations Thereof, SIAM J. Appl. Math., 40(2), 358–372.

    Article  MATH  MathSciNet  Google Scholar 

  5. Windham, M.P. (1985). Numerical classification of proximity data with assignment measures, Journal of Classification, v. 2, 157–172.

    Article  Google Scholar 

  6. Dave, R.N. (1990). Fuzzy shell-clustering and applications to circle detection in digital images, International Journal of General Systems, v. 16, 343–355.

    Article  MathSciNet  Google Scholar 

  7. Hathaway, R.J. and Bezdek, J. C. (1993). Switching Regression Models and Fuzzy Clustering, IEEE Trans. Fuzzy Systems, 1(3), 195–204.

    Article  Google Scholar 

  8. Krishnapuram, R. and J.M. Keller (1993). A possibilistic approach to clustering, IEEE Trans. on Fuzzy Systems, v. 1, 98–110.

    Article  Google Scholar 

  9. Hathaway, R.J., and J.C. Bezdek (2001). Fuzzy c-means clustering of incomplete data, to appear, IEEE Trans. on Systems, Man and Cybernetics B.

    Google Scholar 

  10. Bezdek, J.C. and R.J. Hathaway (2002). Alternating optimization, parts 1 and 2, in preparation for IEEE Trans. on Systs., Man and Cybernetics.

    Google Scholar 

  11. Apostol, T.M. (1969). Calculus, Ginn Blaisdell, Waltham, MA.

    MATH  Google Scholar 

  12. Ortega, J.M. and W.C. Rheinboldt (1970). Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press.

    MATH  Google Scholar 

  13. Gill, P.E., Murray, W. and Wright, M. H. (1981). Practical Optimization, Academic Press, NY.

    MATH  Google Scholar 

  14. Dennis, J.E., Jr., and R.B. Schnabel (1983). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  15. Luenberger, D.G. (1969). Optimization by Vector Space Methods, Wiley, NY.

    MATH  Google Scholar 

  16. Luenberger, D.G. (1984). Linear and Nonlinear Programming. Second Edition, Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  17. Zangwill, W. (1969). Nonlinear Programming: A Unified Approach. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  18. Goldberg, D.E. (1989). Genetic algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  19. Fogle, D.B. (1995). Evolutionary Computation, IEEE Press, Piscataway, NJ.

    Google Scholar 

  20. Golden, R.M. (1996). Mathematical methods for Neural Network Analysis and Design, Bradford Books, MIT Press, Cambridge, MA.

    Google Scholar 

  21. Nguyen, H.T. and Sugeno, M. (eds.) (1997). Fuzzy Systems: Modeling and Control, Kluwer, Norwell, MA.

    Google Scholar 

  22. Hu, Y., and R.J. Hathaway (2001). On efficiency of optimization in fuzzy c-means, preprint.

    Google Scholar 

  23. Bezdek, J.C. and R.J. Hathaway (1992). Numerical convergence and interpretation of the fuzzy c-shells clustering algorithms, IEEE Trans. on Neural Networks, v. 3, 787–793.

    Article  Google Scholar 

  24. Bezdek, J.C., Hathaway, R.J., Sabin, M.J., and W.T. Tucker (1987a). Convergence theory for fuzzy c-means: counterexamples and repairs, IEEE Trans. on Systems, Man and Cybernetics, SMC-17, 873–877.

    Google Scholar 

  25. Bezdek, J.C., Hathaway, R.J., Howard, R.E., Wilson, C.A., and M.P. Windham (1987b). Local convergence analysis of a grouped variable version of coordinate descent, Journal of Optimization Theory and Applications, v. 54, 471–477.

    Article  MATH  MathSciNet  Google Scholar 

  26. Hathaway, R.J. and J.C. Bezdek (1991). Grouped coordinate minimization using Newton’s method for inexact minimization in one vector coordinate, Journal of Optimization Theory and Applications, v. 71, 503–516.

    Article  MATH  MathSciNet  Google Scholar 

  27. Hathaway, R.J., Hu. Y.K., and J. C. Bezdek (2001). Local convergence analysis of trilevel alternating optimization, Neural, Parallel, and Scientific Computation, 9, 19–28.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bezdek, J.C., Hathaway, R.J. (2002). Some Notes on Alternating Optimization. In: Pal, N.R., Sugeno, M. (eds) Advances in Soft Computing — AFSS 2002. AFSS 2002. Lecture Notes in Computer Science(), vol 2275. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45631-7_39

Download citation

  • DOI: https://doi.org/10.1007/3-540-45631-7_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43150-3

  • Online ISBN: 978-3-540-45631-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics