Skip to main content

Beyond the Turing Limit: Evolving Interactive Systems

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2234)

Abstract

Modern networked computing systems follow scenarios that dier from those modeled by classical Turing machines. For example, their architecture and functionality may change over time as components enter or disappear. Also, as a rule their components interact with each other and with the environment at unpredictable times and in unpredictable manners, and they evolve in ways that are not pre-programmed. Finally, although the life span of the individual components may be finite, the life span of the systems as a whole is practically unlimited. The examples range from families of cognitive automata to (models of) the Internet and to communities of intelligent communicating agents. We present several models for describing the computational behaviour of evolving interactive systems, in order to characterize their computational power and eciency. The analysis leads to new models of computation, including ‘interactive’ Turing machines (ITM’s) with advice and new, natural characterizations of non-uniform complexity classes. We will argue that ITM’s with advice can serve as an adequate reference model for capturing the essence of computations by evolving interactive systems, showing that ‘in theory’ the latter are provably more powerful than classical systems.

Keywords

  • Turing Machine
  • Global State
  • Input Stream
  • Input Symbol
  • Combinatorial Circuit

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This research was partially supported by GA ČR grant No. 201/00/1489 and by EC Contract IST-1999-14186 (Project ALCOM-FT).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-45627-9_8
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-45627-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Abelson, D. Allen, D. Coore, Ch. Hanson, G. Homsy, T.F. Knight, R. Nagpal, E. Rauch, G.J. Sussman, R. Weiss: Amorphous computing, Comm. ACM, Vol. 42, No. 5, May 2000, pp. 74–82.

    CrossRef  Google Scholar 

  2. J.L. Balcázar, J. Díaz, J. Gabarró: Structural Complexity I, Second Edition, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  3. G. Berry: The foundations of Esterel, in: G. Plotkin, C. Stirling and M. Tofte (Eds), Proof, Language, and Interaction — Essays in Honour of Robin Milner, The MIT Press, Cambridge MA, 2000, pp 425–454.

    Google Scholar 

  4. L. Cardelli: Global computation, ACM Sigplan Notices, Vol. 32, No. 1, 1997, pp. 66–68.

    CrossRef  Google Scholar 

  5. J. Dassow, J. Hromkovič, J. Karhumäki, B. Rovan, A. Slobodová: On the power of synchronization in parallel computing, Computing, in: A. Kreczmar and G. Mirkowska (Eds), Mathematical Foundations of Computer Science 1989, Proceedings, Lecture Notes in Computer Science, Vol 379, Springer-Verlag, Berlin, 1989, pp. 196–206.

    Google Scholar 

  6. R.M. Karp, R.J. Lipton: Some connections between non-uniform and uniform complexity classes, in: Proc. 12th Annual ACM Symposium on the Theory of Computing (STOC’80), 1980, pp. 302–309, revised as: Turing machines that take advice, L’Enseignement Mathématique, IIe Série, Tome XXVIII, 1982, pp. 191-209.

    Google Scholar 

  7. N.A. Lynch: Distributed algorithms, Morgan Kaufmann Publishers Inc., San Francisco CA, 1996.

    MATH  Google Scholar 

  8. P. Orponen: An overview of the computational power of recurrent neural networks, in: Proc. Finnish AI Conference (Espoo, Finland, August 2000), Vol. 3: AI of Tomorrow, Finnish AI Society, Vaasa, 2000, pp. 89–96.

    Google Scholar 

  9. J. Šíma, J. Wiedermann: Theory of Neuromata. Journal of the ACM, Vol. 45, No. 1, 1998, pp. 155–178.

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. L.G. Valiant: Circuits of the Mind, Oxford University Press, New York, 1994.

    MATH  Google Scholar 

  11. P. van Emde-Boas: Machine models and simulations, in: J. van Leeuwen (ed.). Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity, Elsevier Science Publ, Amsterdam, 1990, pp. 3–66.

    Google Scholar 

  12. J. van Leeuwen, J. Wiedermann: On algorithms and interaction, in: M. Nielsen and B. Rovan (Eds), Mathematical Foundations of Computer Science 2000, 25th Int. Symposium (MFCS’2000), Lecture Notes in Computer Science, Vol. 1893, Springer-Verlag, Berlin, 2000, pp. 99–112.

    CrossRef  Google Scholar 

  13. J. van Leeuwen, J. Wiedermann: A computational model of interaction in embedded systems, Technical Report UU-CS-02-2001, Dept. of Computer Science, Utrecht University, 2001.

    Google Scholar 

  14. J. van Leeuwen, J. Wiedermann: The Turing machine paradigm in contemporary computing, in: B. Enquist and W. Schmidt (Eds), Mathematics Unlimited — 2001 and Beyond, Springer-Verlag, Berlin, 2001, pp. 1139–1155.

    Google Scholar 

  15. J. van Leeuwen, J. Wiedermann: Breaking the Turing barrier: the case of the Internet, manuscript in preparation, February 2001.

    Google Scholar 

  16. P. Wegner: Why interaction is more powerful than algorithms, C. ACM 40, (1997) 315–351.

    CrossRef  Google Scholar 

  17. P. Wegner, D.Q. Goldin: Interaction, computability, and Church’s thesis, The Computer Journal 2000 (to appear).

    Google Scholar 

  18. J. Wiedermann: On the power of synchronization, J. Inf. Process. Cybern. (EIK), Vol. 25, No. 10, 1989, pp. 499–506.

    MATH  MathSciNet  Google Scholar 

  19. J. Wiedermann: The computational limits to the cognitive power of neuroidal tabula rasa, in: O. Watanabe and T. Yokomori (Eds), Algorithmic Learning Theory, Proc. 10th International Conference (ALT’99), Lecture Notes in Artic. Intelligence, Vol. 1720, Springer-Verlag, Berlin, 1999, pp. 63–76.

    Google Scholar 

  20. J. Wiedermann, J. van Leeuwen: Emergence of super-Turing computing power in articial living systems, in: J. Kelemen (Ed.), Artificial Life 2001, Proceedings 6-th European Conference (ECAL 2001), Lecture Notes in Articial Intelligence, Springer-Verlag, Berlin, 2001 (to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Leeuwen, J., Wiedermann, J. (2001). Beyond the Turing Limit: Evolving Interactive Systems. In: Pacholski, L., Ružička, P. (eds) SOFSEM 2001: Theory and Practice of Informatics. SOFSEM 2001. Lecture Notes in Computer Science, vol 2234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45627-9_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45627-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42912-8

  • Online ISBN: 978-3-540-45627-8

  • eBook Packages: Springer Book Archive