Skip to main content

Silicon Nitride Ceramics

  • Chapter
  • First Online:
High Performance Non-Oxide Ceramics II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 102))

Abstract

Silicon nitride ceramics is a generic term for a variety of alloys of Si3N4 with additional compounds necessary for a complete densification of the Si3N4 starting powder. They are heterogeneous, multicomponent materials characterised by the inherent properties of the crystalline modifications α and β of Si3N4 and the significant influence of the densification additives. With a view to ability of the α and β modification to form solid solutions α-Si3N4 (αss) and β-Si3N4 (βss) solid solutions can be distinguished. Each group contains engineered materials with interesting properties for special applications. Phase relations and micro-structures determine the properties decisively. Composition of the phases, the distribution of the grains, their aspect ratio and the grain boundary phase are pronounced microstructural features. The formation of the microstructure strongly depends on the one hand on the quality of the Si3N4 starting powders, which closely is related to the chemistry of the production process, and on the other on the liquid phase sintering as the most important step in the densification route. The interrelation between pure Si3N4, the densification of the powder including the role of sintering additives, microstructural engineering, physicochemical properties of the sintered Si3N4 ceramics (SSN, GPSN, HPSN, HIP-SSN, HIP-SN) are described in more detail and compared to reaction bonded Si3N4 ceramics (RBSN), which are produced by nitridation of silicon powders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12 References

  1. Nittler LR, Hoppe P, Alexander CMOD, Amari S, Eberhardt P, Gao X, Lewis RS, Strebel R, Walker RM, Zinner E (1995) The Astrophysical J 453: L25

    CAS  Google Scholar 

  2. Lee MR, Russel SS, Arden JW, Pillinger CT (1995) Meteoritics 30: 387

    CAS  Google Scholar 

  3. Sainte-Claire Deville H, Wörrier F (1859) Ann Chem Pharm 34: 248

    Google Scholar 

  4. Melner H (1896) German Patent No 88999

    Google Scholar 

  5. Weiss L, Engelhardt T (1910) Z Anorg Chem 65: 38

    CAS  Google Scholar 

  6. Wöhler L (1926) Z Electrochem 32: 420

    Google Scholar 

  7. Schroder F (ed) (1989) Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edn., Silicon, Suppl Vol B4, Springer, Berlin, Heidelberg, New York

    Google Scholar 

  8. DP 235 421 (1908), DP 238450 (1909)

    Google Scholar 

  9. Collins JF, Gerby RW (1955) J Met 7: 612

    CAS  Google Scholar 

  10. Reinhardt F (1958) Glas-Email-Keramo Technologie 9: 327

    Google Scholar 

  11. Parr NL, Martin GF, May ERW (1960) Preparation, Microstructure and Mechanical Properties of Silicon Nitride. In: Popper P (ed) Special Ceramics. Heywood, London, p 102

    Google Scholar 

  12. Popper P, Ruddlesden SN (1961) Trans Br Ceram Soc 60: 603

    CAS  Google Scholar 

  13. Deeley GG, Herbert JM, Moore NC (1961) Powder Metall 8: 145

    CAS  Google Scholar 

  14. Riley FL (2000) J Am Ceram Soc 83: 245

    CAS  Google Scholar 

  15. Herrmann M, Klemm H, Schubert C (2000) Silicon Nitride Based Hard Materials. In: Riedel R (ed) Handbook of Ceramic Hard Materials. Wiley-VCH, Weinheim, p 747

    Google Scholar 

  16. Chen IW, Becher PF, Mitomo M, Petzow G, Yen TS (1993) Symp Proc, MRS, Pittsburgh

    Google Scholar 

  17. Hampshire S (1994) Nitride Ceramics. In: Swain MV (ed) Structure and properties of ceramics. Cahn RW, Haasen P, Kramer EJ (eds) Materials Science and Technology, Comprehensive Treatment. VCH, Weinheim, p 119

    Google Scholar 

  18. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edn. Springer, Berlin, Heidelberg, New York; (a) Schröder F (ed) (1996) Silicon Nitride: Mechanical and Thermal Properties: Diffusion. Silicon Suppl Vol B5bl; (b) Schröder F (ed) (1997) Silicon Nitride: Electronic Structure; Electrical, Magnetic and Optical Properties; Spectra; Analysis. Silicon Suppl Vol B5b2; (c) Schröder F (ed) (1991) Silicon Nitride in Microelectronics and Solar Cells. Silicon Suppl Vol B5c; (d) Schröder F (ed) (1995) Silicon Nitride: Electrochemical Behavior; Colloidal Chemistry and Chemical Reactions. Silicon Suppl Vol B5dl; (e) Schröder F (ed) (1995) Silicon Nitride: Chemical Reactions (continued). Silicon Suppl Vol B5d2; (f) Schröder F (ed) (1994) Non-Electronic Applications of Silicon Nitride. SiNx. SiNx:H. Silicon Suppl Vol B5e

    Google Scholar 

  19. Hoffmann MJ, Petzow G (eds) (1994) Tailoring of Mechanical Properties of Si3N4 Ceramics. NATO ASI Ser E 276. Kluwer Acad Publ, Dordrecht

    Google Scholar 

  20. Hoffmann MJ, Becher PF, Petzow G (eds) (1994) Silicon Nitride 93 — Proc Int Conf on Silicon Nitride-Based Ceramics, Stuttgart Trans Tech Publications Ltd, Aedermannsdorf, Switzerland

    Google Scholar 

  21. Lange H, Wötting G, Winter G (1991) Angew Chem Int Ed Engl 30: 1579

    Google Scholar 

  22. Wang CM, Pan X, Rühle M, Riley FL, Mitomo M (1996) J Mat Sci 31: 5281

    CAS  Google Scholar 

  23. Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fueß H, Kroll P, Boehler R (1999) Nature 400: 340

    CAS  Google Scholar 

  24. Toraya H (2000) J Appl Cryst 33: 95

    CAS  Google Scholar 

  25. Griün R (1979) Acta Cryst B35: 800

    Google Scholar 

  26. Schwarz M, Miehe G, Zerr A, Kroke E, Poe BT, Fuess H, Riedel R (2000) Adv Mat 12: 883

    CAS  Google Scholar 

  27. Hiraga K, Tsuno K, Shindo D, Hirabayashi M, Hagashi S, Hirai T (1983) Phil Mag A 47: 483

    CAS  Google Scholar 

  28. Wendel JA, Goddard III WA (1992) J Chem Phys 97: 5048

    CAS  Google Scholar 

  29. He H, Sekine T, Kobayashi T, Hirosaki H, Suzuki J (2000) Phys Rev B62/17: 1

    Google Scholar 

  30. Kohatsu I, Mc Cauley JW (1974) Mat Res Bull 9: 917

    CAS  Google Scholar 

  31. Suematsu H, Petromic JJ, Mitchell TE (1996) Mat Sci Eng 209: 97

    Google Scholar 

  32. Chakraborty D, Mukerji J (1983) Mat Res Bull 17: 843

    Google Scholar 

  33. Sun EY, Becher PF, Plucknett KP, Hueh CH, Alexander KB, Waters SB (1998) J Am Ceram Soc 81: 2821 and 2831

    Google Scholar 

  34. Dusza J, Eschner T, Rundgren K (1997) J Mat Sci Lett 16: 1664

    CAS  Google Scholar 

  35. Ching W, Xu Y, Gale J, Rühle M (1998) J Am Ceram Soc 81: 3189

    CAS  Google Scholar 

  36. Hay JC, Sun EY, Pharr GM, Becher PF, Alexander KB (1998) J Am Ceram Soc 81: 2661

    CAS  Google Scholar 

  37. O’Hare PAG, Tomaszkiewicz I, Beck II CM, Seifert HJ (1999) J Chem Thermodynamics 31: 303

    Google Scholar 

  38. Liang JL, Topor L, Navrotsky A (1999) J Mat Res 14: 1959

    CAS  Google Scholar 

  39. Andrievskii RA, Spivak II (1984) Nitrid Kremnija i Materialy na ego ocnove, Metallurgija, Moskau, p 19

    Google Scholar 

  40. Kitayama M, Hirao K, Toriyama M, Kanzaki S (1999) J Am Ceram Soc 82: 3105

    CAS  Google Scholar 

  41. Watari K (2001) J Ceram Soc Jpn 109: S7

    CAS  Google Scholar 

  42. Kunz KP, Sarin VK, Davis RF, Bryan SR (1988) Mat Sci Eng A 105/106: 47

    Google Scholar 

  43. Kijima K, Shirasaki S (1976) J Chem Phys 65: 2668

    CAS  Google Scholar 

  44. Clancy WP (1974) Microscope 22: 279

    CAS  Google Scholar 

  45. Wild S, Grieveson P, Jack KH (1972) Special Ceramics 5: 385

    Google Scholar 

  46. Konstanovskii AV, Evseev AV (1994) High Temp (translated from Teplofizika Vysokikh Temperatur, Russia) 32: 25

    Google Scholar 

  47. Cerenius Y (1999) J Am Ceram Soc 82: 380

    CAS  Google Scholar 

  48. Schneider J, Frey F, Johnson N, Laschke K (1994) Z Kristallographie 209: 328

    CAS  Google Scholar 

  49. Kitayama M (1999) J Am Ceram Soc 82: 3263

    CAS  Google Scholar 

  50. Thompson DP (1993) New Grain Boundary Phases for Nitrogen Ceramics. In: Chen IW, Becher PF, Mitomo M, Petzow G, Yen TS (eds) Silicon Nitride Ceramics. Mat Res Soc Symp Proc 287: 79

    Google Scholar 

  51. Milhet X, Demenet JL, Rabier (1999) Phil Magaz Lett 79: 19

    CAS  Google Scholar 

  52. Wang CM, Riley FL (1996) J Eur Ceram Soc 16: 679.

    CAS  Google Scholar 

  53. Bowen LJ, Carruthers TG, Brook RJ (1978) J Am Ceram Soc 61: 335

    CAS  Google Scholar 

  54. a. Saito T, Iwamoto Y, Ukyo Y, Ikuhara Y (2000) Interface Characterisation of α-β Phase Transformation in Si3N4 by Transmission Electron Microscopy. In: Sakuma T, Sheppart LM, Ikuhara Y (eds) Grain Boundary Engineering in Ceramics, Am Ceram Soc, Westerville OH, p 173

    Google Scholar 

  55. Colquhoun J (1973) Proc Br Cer Soc 22: 207

    Google Scholar 

  56. Chase MW JR, Davies CA, Downey JR, Frurip DJ, McDonald RA, Syverud AN (1985) J Phys Chem Ref Data 14 Suppl. 1

    Google Scholar 

  57. The American Ceramic Society (ACerS) (ed) (1996) Cumulative Indexes of “Phase Equilibria Diagrams — Phase Diagrams for Ceramists”. Vol I–XII and Annuals 91–93, Westerville, Ohio

    Google Scholar 

  58. Alper AM (ed) (1995) Phase Diagrams in Advanced Ceramics. Academic Press, London

    Google Scholar 

  59. Massalski TB (ed) (1990) Binary Alloy Phase Diagrams. American Society for Materials (ASM), Materials Park, Ohio

    Google Scholar 

  60. Petzow G, Effenberg G, Aldinger F (eds) (1988–2000) Ternary Alloys — A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams Materials Science International Series (MSI),Vol. 1–17, Stuttgart

    Google Scholar 

  61. Blegen K (1976) PhD Thesis, Techn University of Trondheim, Norway

    Google Scholar 

  62. Hillert M, Jonsson S, Sundman B (1992) Z Metallkde. 83: 648

    CAS  Google Scholar 

  63. Heuer AH, Lou VL (1990) J Am Ceram Soc 73: 2785

    CAS  Google Scholar 

  64. Hallstedt B (1992) CALPHAD 16: 53

    CAS  Google Scholar 

  65. Swamy V, Saxana SK, Sundman B (1994) J Geoph Res 99: 11 and 787

    CAS  Google Scholar 

  66. Wriedt HA (1990) Bull Alloy Phase Diagr 11: 43

    CAS  Google Scholar 

  67. Rocabois P, Chatillon C, Bernard C (1996) J Am Ceram Soc 79: 1351 and 1361

    CAS  Google Scholar 

  68. Weiss J, Lukas HL, Petzow G (1983) Calculation of Phase Equilibria in Systems based on Si3N4. In: Riley FL (ed) Progress in Nitrogen Ceramics. NATO ASI Series E. 65: 77

    Google Scholar 

  69. Richter HJ, Herrmann M, Hermel W (1991) J Eur Ceram Soc 7: 3

    CAS  Google Scholar 

  70. Lukas HL, Weiss J, Krieg H, Henig ET, Petzow G (1982) High Temp High Press 14: 607

    CAS  Google Scholar 

  71. Gauckler LJ (1976) PhD Thesis, University of Stuttgart

    Google Scholar 

  72. Jack KH (1976) J Mat Sci 11: 1135

    CAS  Google Scholar 

  73. Gauckler LJ, Lukas HL, Petzow G (1975) J Am Ceram Soc 58: 346

    CAS  Google Scholar 

  74. Lumby RJ, Noith B, Taylor AJ (1975) Spec Ceram Br Ceram Res Association 6: 283

    CAS  Google Scholar 

  75. Naik JK, Gauckler LJ, Tien TY (1978) J Am Ceram Soc 61: 332

    CAS  Google Scholar 

  76. Bergmann B, Ekström T, Micski A (1991) J Eur Ceram Soc 8: 141

    Google Scholar 

  77. Boskovic S, Gauckler LJ, Petzow G, Tien TY (1977) Powder Metal Intern 9: 185; (1978) 10: 184; (1979) 11: 169

    CAS  Google Scholar 

  78. Hillert M, Jonsson S (1992) Z Metallkde 83: 720

    CAS  Google Scholar 

  79. Dumitrescu LFS, Sundman B (1995) J Eur Ceram Soc 15: 89 and 239

    CAS  Google Scholar 

  80. Anya CC, Hendrix A (1992) J Eur Ceram Soc 10: 65

    CAS  Google Scholar 

  81. Sekercioglu J, Wills RR (1979) J Am Ceram Soc 62: 590

    CAS  Google Scholar 

  82. Hillert M, Jonsson S (1992) CALPHAD 16: 199

    CAS  Google Scholar 

  83. Tien TY, Petzow G, Gauckler LJ, Weiss J (1983) Phase Equilibrium Studies in Si3N4-Metal Oxides Systems. In: Riley FL (ed) Progress in Nitrogen Ceramics. NATO ASI Ser E 65. Kluwer Acad Publ, Dordrecht, p 89

    Google Scholar 

  84. Thompson DP, Korgul P, Hendry A (1983) The structural characterisation of SiAlON Polytypoids. In: Riley FL (ed) Progress in Nitrogen Ceramics. NATO ASI Ser E 65. Kluwer Acad Publ, Dordrecht, p 61

    Google Scholar 

  85. Gauckler LJ, Weiss J, Tien TY, Petzow G (1978) J Am Ceram Soc 61: 397

    CAS  Google Scholar 

  86. Zhou Y, Vleugels J, Laoui T, Ratchev P, Van Der Biest O (1995) J Mater Sci 30: 4584

    CAS  Google Scholar 

  87. Liang JJ, Navrotzky A, Leppert VJ, Paskowitz MJ, Risbud SH, Ludwig T, Seifert HJ, Aldinger F (1999) J Mater Res 14: 4630

    CAS  Google Scholar 

  88. Mitomo M, Kuramato N, Tsutsumi M, Suzuki H (1987) Yogyo Kyokaishi 86: 880

    Google Scholar 

  89. Ekström T, Käll PO, Nygren M, Olsson PO (1989) J Mater Sci 24: 1853

    Google Scholar 

  90. Huseby C, Lukas HL, Petzow G (1975) J Am Ceram Soc 58: 337

    Google Scholar 

  91. Thompson DP, Gauckler LJ (1977) J Am Ceram Soc 60: 470

    CAS  Google Scholar 

  92. Kim DJ, Greil P, Petzow G (1987) Adv Ceram Mat 2: 817; 2: 822

    CAS  Google Scholar 

  93. Ekelund M, Forslund M, Erikson G, Johansson T (1988) J Am Ceram Soc 71: 956

    CAS  Google Scholar 

  94. Neidhardt V, Schubert H, Bischoff E, Petzow G (1994) Key Eng Mat 89: 187

    Google Scholar 

  95. Wada H, Wang HJ, Tien TY (1988) J Am Ceram Soc 71: 837

    CAS  Google Scholar 

  96. Jha A (1993) J Mat Sci 28: 3069

    CAS  Google Scholar 

  97. Wang MJ, Wada H (1990) J Mat Sci 25: 1690

    CAS  Google Scholar 

  98. Lange FF (1980) J Am Ceram Soc Bull 59: 249

    Google Scholar 

  99. Hampshire S, Park HK, Thompson DP, Jack KH (1978) Nature 274: 880

    CAS  Google Scholar 

  100. Huang ZK, Chen IW (1996) J Am Ceram Soc 79: 2091

    CAS  Google Scholar 

  101. Huang ZK, Tien TY, Yen TS (1986) J Am Ceram Soc 69: C241

    CAS  Google Scholar 

  102. Kaiser A (1999) PhD Thesis, RWTH Aachen

    Google Scholar 

  103. Mitomo M, Izumi F, Horiuchi S, Matzui J (1982) J Mater Sci 17: 2359

    CAS  Google Scholar 

  104. Mueller R (1981) PhD Thesis, University of Stuttgart

    Google Scholar 

  105. Lange FF (1978) J Am Ceram Soc 61: 53

    CAS  Google Scholar 

  106. Clarke DR, Lange FF (1980) J Am Ceram Soc 63: 585

    Google Scholar 

  107. Slasor S (1986) PhD Thesis, University of Newcastle Upon Tyne

    Google Scholar 

  108. Slasor S, Liddell K, Thompson DP (1986) The Role of Nd2O3 as an Additive in the Formation of α′-and β′-Sialons. In: Howlett SP, Taylor D (eds) Proc Special Ceramics, p 35; (1986) Br Ceram Proc 37: 61

    Google Scholar 

  109. Hohnke H, Gauckler LJ, Schneider G, Tien TY (1979) Am Ceram Soc Bull 58: 885

    Google Scholar 

  110. Jack KH (1978) Mat Sci Res 11: 561

    CAS  Google Scholar 

  111. Gauckler LJ, Hohnke H, Tien TY (1980) J Am Ceram Soc 63: 35

    CAS  Google Scholar 

  112. Schubert H, Gehrke E (1994) Processing, Phase Formation and Creep Behavior of Si3N4 with Y2O3 and A12O3. In: Hoffmann MJ, Petzow G (eds) Tailoring of Mechanical Properties of Si3N4 Ceramics. NATO ASI Ser E 276, Kluwer Acad, Dordrecht, p 245

    Google Scholar 

  113. Sun WY, Huang ZK, Tien TY, Yan DS (1991) Mat Lett 11: 67

    CAS  Google Scholar 

  114. Hoffmann MJ (1994) High Temperature Properties of Yb-Containing Si3N4. In: Hoffmann MJ, Petzow G (eds) Tailoring of Mechanical Properties of Si3N4 Ceramics, Kluwer Acad Publ, Dordrecht, p 233

    Google Scholar 

  115. Weiss J, Gauckler LJ, Tien TY (1979) J Am Ceram Soc 62: 632

    CAS  Google Scholar 

  116. Hampp E (1993) PhD Thesis, University of Stuttgart

    Google Scholar 

  117. Nishimura T, Mitomo M (1995) J Mater Res 10: 240

    CAS  Google Scholar 

  118. Huang ZK, Sun WY, Yen TS (1985) J Mat Sci Lett. 4: 255

    Google Scholar 

  119. Hewett CL, Cheng YB, Muddle BC, Trigg MB (1998) J Eur Ceram Soc 18: 417

    CAS  Google Scholar 

  120. Hewett CL, Cheng YB, Muddle BC, Trigg MB (1998) J Am Ceram Soc 81: 1781

    CAS  Google Scholar 

  121. Wood CA, Cheng YB (2000) J Eur Ceram Soc 20: 357

    CAS  Google Scholar 

  122. Wang PL, Zhang C, Sun WY, Yan DS (1999) J Eur Ceram Soc 19: 553

    CAS  Google Scholar 

  123. Wood CA, Zhao H, Cheng YB (1999) J Am Ceram Soc 82: 421

    CAS  Google Scholar 

  124. AS3. Ekström T (1997) α-SiAlON and α/β-SiAlON composites; Recent research. In: Babini GN, Haviar M, Sajgalik P (eds) Engineering Ceramics’96; Higher Reliability through Processing, Kluwer Academic Publications, The Netherlands, p 147

    Google Scholar 

  125. Ekström T, Nygren M (1992) J Am Ceram Soc 75: 259

    Google Scholar 

  126. Nordberg LO, Shen Z, Nygren M, Ekström T (1997) J Eur Ceram Soc 17: 575

    CAS  Google Scholar 

  127. Sun WY, Yan DS, Gao L, Mandal H, Liddel K, Thompson DP (1995) J Eur Ceram Soc 15: 349

    CAS  Google Scholar 

  128. Nordberg LO (1997) PhD Thesis, University of Stockholm

    Google Scholar 

  129. Mandal H, Thompson DP (1999) J Eur Ceram Soc 19: 543

    CAS  Google Scholar 

  130. Mukerji J, Das PK, Greil P, Petzow G (1987) Ceram Intern 13: 215

    CAS  Google Scholar 

  131. Mandal H, Thompson DP (1996) J Mater Sci Letters 15: 1435

    CAS  Google Scholar 

  132. Mandal H, Hoffmann MJ (2000) Novel Developments in α-SiAlON Ceramics. In: Sajgalik P, Lences Z (eds) Engineering Ceramics: Multifunctional Properties-New Perspectives. Trans Tech Publications Ltd, Switzerland, p 131

    Google Scholar 

  133. Izhevsky VA, Genova LA, Bressiani JC, Aldinger F (2000) J Eur Ceram Soc 20: 2275

    Google Scholar 

  134. Wang PL, Tu HY, Sun WY, Yan DS, Nygren M, Ekström T (1995) J Eur Ceram Soc 15:689

    CAS  Google Scholar 

  135. Zhang C, Sun WY, Yan DS (1998) J Mater Sci Letters 17: 583; (1999) J Eur Ceram Soc 19: 33

    CAS  Google Scholar 

  136. Mitomo M, Ishida A (1999) J Eur Ceram Soc 19: 7

    CAS  Google Scholar 

  137. Sun WY, Tu HY, Wang PL, Yan DS (1997) J Eur Ceram Soc 17: 789

    CAS  Google Scholar 

  138. Liddell K, Thompson DP, Wang PL, Sun WY, Gao L, Yan DS (1998) J Eur Ceram Soc 18: 1479

    CAS  Google Scholar 

  139. Mandal H, Thompson DP, Ekström T (1993) J Eur Ceram Soc 12: 421

    CAS  Google Scholar 

  140. Lewis MH, Jumali MHH, Lumby RJ (1997) Nd-and Gd-doped α′/β′ SiAlON Ceramics. In: Niihara K, Hirano S, Kanzaki S, Komeya K, Moriuaga K (eds) Ceramic Materials and Components for Engines. Japan Fine Ceramics Association, Tokyo, p 643

    Google Scholar 

  141. Zhang E, Liddell K, Thompson DP (1996) Brit Ceram Trans 95: 169

    CAS  Google Scholar 

  142. Yu ZB, Thompson DP, Bhattit R (2000) J Eur Ceram Soc 20: 1815

    CAS  Google Scholar 

  143. Nunn SD, Hohnke H, Gauckler LJ, Tien TY (1978) J Am Ceram Soc Bull 57: 321

    Google Scholar 

  144. Weiss J (1977) MS thesis, University of Stuttgart

    Google Scholar 

  145. Chee KS, Cheng YB, Smith ME (1995) J Eur Ceram Soc 15: 1213

    CAS  Google Scholar 

  146. Sun WY, Yan DS, Gao L, Mandal H, Lidell K, Thompson DP (1996) J Eur Ceram Soc 16: 1277

    CAS  Google Scholar 

  147. Kaiser A, Telle R, Richter HJ, Herrmann M, Hermel W (1996) Konstitutionsuntersuchungen im System Nd-Si-Al-ON. In: Petzow G, Tobolski J, Telle R (eds) Hochleistungs-Keramiken. VCH, Weinheim, p 627; (2001) Z. Metallkd. 92: 1163

    Google Scholar 

  148. Rosenflanz A, Chen IW (1999) J Am Ceram Soc 82: 1025

    CAS  Google Scholar 

  149. Shen Z, Nygren M (1997) J Eur Ceram Soc 17: 1639

    CAS  Google Scholar 

  150. Shen Z, Nygren M (2000) Nd-Doped α-Sialon and Related Phases: Stability and Compatibility. In: Hampshire S, Pomeroy MJ (eds) Nitrides and Oxynitrides. Trans Tech Publications Ltd, Switzerland, p 191

    Google Scholar 

  151. Nordberg LO, Nygren M, Käll PO, Shen Z (1998) J Am Ceram Soc 81: 1461

    CAS  Google Scholar 

  152. Shen Z, Ekström T, Nygren M (1996) J Am Ceram Soc 79: 721

    CAS  Google Scholar 

  153. Herrmann M, Kurama S, Mandal H (2002) J Eur Ceram Soc 22: 109

    Google Scholar 

  154. Zhao R, Cheng YB (1995) J Eur Ceram Soc 15: 1221

    CAS  Google Scholar 

  155. Chen WW, Li YW, Sun WY, Yan DS (2000) J Eur Ceram Soc 20: 1327

    CAS  Google Scholar 

  156. Sun WY, Tien TY, Yen TS (1991) J Am Ceram Soc 74: 2547 and 2753

    CAS  Google Scholar 

  157. Wisnudel M (1991) MS Thesis, University of Michigan, Ann Arbor

    Google Scholar 

  158. Hwang CM (1988) PhD Thesis, University of Michigan, Ann Arbor

    Google Scholar 

  159. Naik JK, Tien TY (1979) J Am Ceram Soc 62: 642

    CAS  Google Scholar 

  160. Thompson DP (1986) Phase relationships in Y-Si-Al-O-N ceramics. In: Tressler RE, Messing GL, Pantano CG, Newnham RE (eds) Mat Sci Res Proc 21st Univ Conf in Ceramic Science; Tailoring Multiphase and Composite Ceramics 20. Plenum Press, New York, p 79

    Google Scholar 

  161. Sun WY, Huang ZK, Chen JX (1983) Trans J Brit Ceram Soc 82: 173

    CAS  Google Scholar 

  162. Huang ZK, Greil P, Petzow G (1983) J Am Ceram Soc 66: C96

    CAS  Google Scholar 

  163. Huang ZK, Tien TY (1996) J Am Ceram Soc 79: 1717

    CAS  Google Scholar 

  164. Wisnudel M, Tien TY (1994) J Am Ceram Soc 77: 2653

    CAS  Google Scholar 

  165. Klemm H, Herrmann M, Schubert C, Hermel W (1995/1996) High Temp-High Press 27/28: 449

    CAS  Google Scholar 

  166. Redington Keely W, Redington M, Hampshire S (2000) Liquid Formation in the Y-Si-Al-O-N System. In: Hampshire S, Pomeroy MJ (eds) Nitrides and Oxinitrides. Mater Sci Forum 325–326. Trans Tech Publications Ltd, Switzerland, p 237

    Google Scholar 

  167. Bandyopadhyay S, Hoffmann MJ, Petzow G (1996) J Am Ceram Soc 79: 1537

    CAS  Google Scholar 

  168. Ekström T, McKenzie KJD, Ryan MJ, Brown WM, White GV (1997) J Mater Chem 7: 505

    Google Scholar 

  169. Kolitsch V, Seifert HJ, Ludwig T, Aldinger F (1999) J Mater Res 14: 447

    CAS  Google Scholar 

  170. Stutz D, Greil P, Petzow G (1986) J Mat Sci Lett 5: 335

    CAS  Google Scholar 

  171. Izumi F, Mitomo M, Suzuki J (1982) J Mater Sci Lett 1: 533

    CAS  Google Scholar 

  172. Shen Z, Ekström T, Nygren M (1996) J Phys D Appl Phys 29: 893

    CAS  Google Scholar 

  173. Weiss J (1980) PhD Thesis, University of Stuttgart

    Google Scholar 

  174. Seifert HJ (1999) Z Metallkd 90: 1016

    CAS  Google Scholar 

  175. Lange FF (1979) J Am Ceram Soc 62: 617

    CAS  Google Scholar 

  176. Cao GZ, Huang ZK, Yan DS (1989) Sci China Ser A 32: 429

    CAS  Google Scholar 

  177. Mahoney FM (1992) PhD thesis, University of Stuttgart

    Google Scholar 

  178. Dörner P (1982) PhD Thesis, University of Stuttgart

    Google Scholar 

  179. Wang PL, Li YW, Yan DS (2000) J Eur Ceram Soc 20: 1333

    CAS  Google Scholar 

  180. Gauckler LJ, Hucke E, Lukas HL, Petzow G (1978) CALPHAD VII: 49; (1979) J Mat Sci 14: 1513

    Google Scholar 

  181. Ran Q (1987) PhD Thesis, University of Stuttgart

    Google Scholar 

  182. Gauckler LJ, Petzow G (1977) Representation of Multicomponent Silicon Nitride Based Systems. In: Riley FL (ed) Nitrogen Ceramics, Noordhoff-Leyden, p 41

    Google Scholar 

  183. Metselaar R, Yan DS (1999) Pure Appl Chem 71: 1765

    CAS  Google Scholar 

  184. Oyama Y, Kamigaito O (1971) Jap J Appl Phys 10/11: 1637

    Google Scholar 

  185. Jack KH, Wilson WJ (1972) Nature (London), Phys Sci 283: 28

    Google Scholar 

  186. Willems HX, Hendrix MMRM, Metselaar R, de With G (1992) J Eur Ceram Soc 10: 327; 10: 339

    CAS  Google Scholar 

  187. Hallstedt B, Hillert M, Selby M, Sundman B (1994) CALPHAD 18: 31

    CAS  Google Scholar 

  188. Sekine T, He H, Kobayashi T, Tansho M, Kimoto K (2001) Chem Phys Let 344: 395

    CAS  Google Scholar 

  189. Cao GZ, Metselaar R (1991) Chem Mater 3: 242

    CAS  Google Scholar 

  190. Mandal H, Thompson DP, Jack KH (1999) Key Eng Mat 154–160: 1

    Google Scholar 

  191. Mandal H, Hoffmann MJ (1999) J Am Ceram Soc 82: 229

    CAS  Google Scholar 

  192. Lathrop D (2000) Ceram Bull 79: 54

    CAS  Google Scholar 

  193. Schwier G, Nietfeld G, Franz G (1989) Mat Sci Forum 47: 1

    CAS  Google Scholar 

  194. Herrmann M, Schulz I, Hintermayer J (1995) Materials From Low Cost Silicon Nitride Powders In: Galassi C (ed) Proc 4th EcerS Conf, Riccione, Gruppo Editoriale Faenza Editrice, p 211

    Google Scholar 

  195. Chang FW, Liou TH, Tsai FM (2000) Thermochimica Acta 354: 71

    CAS  Google Scholar 

  196. Liu YD, Kimura S (1999) Powder technology 106: 160

    CAS  Google Scholar 

  197. Hirotsuru H, Isozaki K, Yoshida A (1993) Trans Mat Res Soc Jap 14A: 815

    Google Scholar 

  198. Nakamura M, Kuranari Y, Imamura Y (1987) Characterisation and synthetic process of Si3N4 material powders. In: Somiya S, Mitomo M, Yoshimura M (eds) Silicon Nitride I. Elsevier, London, p 40

    Google Scholar 

  199. Kohtoku Y (1987) Developments in Si3N4 powder prepared by the imide decomposition method. In: Somiya S, Mitomo M, Yoshimura M (eds) Silicon Nitride I. Elsevier, London, p 71

    Google Scholar 

  200. Cochran GA, Conner CL, Eismann GA, Weimer AW, Carroll DF, Dunmead SD, Hwang CJ (1994) The Synthesis of a High Quality, Low Cost Silicon Nitride Powder by the Carbothermal Reduction of Silica. In: Hoffmann MJ, Becher PF, Petzow G (eds) Silicon Nitride 93. Key Eng Mater 89–91. Trans Tech Publications Ltd, Switzerland, p 3

    Google Scholar 

  201. Bandyopadhyay S, Mukerji J (1991) Ceram Inter 17: 171

    CAS  Google Scholar 

  202. Ishii T, Sano A, Imai I (1987) α-Si3N4 powder produced by nitriding silica using carbothermal reduction. In: Somiya S, Mitomo M, Yoshimura M (eds) Silicon Nitride I. Elsevier, London, p 59

    Google Scholar 

  203. Bandyopadhyay S, Mukerji J (1992) Ceram Inter 18: 308

    Google Scholar 

  204. Arik H, Saritas S, Gunduz M (1999) J Mat Sci 34: 835

    CAS  Google Scholar 

  205. Rahman A, Riley FL (1989) J Eur Ceram Soc 5: 11

    CAS  Google Scholar 

  206. Mukerji J, Bandyopadhyay S (1988) Adv Ceram Mat 3: 369

    CAS  Google Scholar 

  207. Brink R, Woditsch P (1998) cfl/Ber DKG, 75/7: 22

    Google Scholar 

  208. Dorn FW, Krause W, Schroder F (1992) Adv Mat 4: 221

    CAS  Google Scholar 

  209. Jennett TA, Harmsworth PD, Jones AG (1994) Ultra fine crystalline Silicon Nitride from a continuous Gas Phase Plasma Route. In: Hoffmann MJ, Becher PF, Petzow G (eds) Silicon Nitride 93. Key Eng Mat 89–91. Trans Tech Publications Ltd, Switzerland, p 47

    Google Scholar 

  210. Grabis J, Zalite I, Reichel U (2000) cfi/Ber DKG 77/7: 9

    Google Scholar 

  211. Kubo N, Futaki S, Shiraishi K (1987) Synthesis of ultrafine 0 powder using the plasma process and powder characterisation. In: Somiya S, Mitomo M, Yoshimura M (eds) Silicon Nitride I. Elsevier, London, p 93

    Google Scholar 

  212. Friedrich M, Mohr R, Drost H, Mach R, Gey E (1997) Silicates Industries 11: 1–2

    Google Scholar 

  213. Drost H, Friedrich M, Mohr R, Gey E (1997) Nucl Instr and Methods in Physics Res 122: 598

    CAS  Google Scholar 

  214. Borsella E, Caneve L, Fantoni R, Piccirillo S, Basili N, Enzo S (1989) Appl Surface Sci 36: 213

    Google Scholar 

  215. Kroke E, Li YL, Konetschny C, Lecomte E, Fasel C, Riedel A (2000) Mat Sci Eng R26: 97

    CAS  Google Scholar 

  216. Merzhanov AG (1995) Ceram Int 21: 371

    CAS  Google Scholar 

  217. Temer MR, Swenser SP, Cheng YB (2001) Characterization of Multi-Cation stabilized Alpha-SiAlON Materials. In: Heinrich JG, Aldinger F (eds) Ceramic Materials and Components for Engines, 7th International Symposium. Wiley VCH, Weinheim, p 447

    Google Scholar 

  218. Hirata T, Akiyama K, Morimoto T (2000). J Eur Ceram Soc 20: 1191

    CAS  Google Scholar 

  219. Bermudo VJ Osendi MI (1999) Ceram Intern 25: 607

    CAS  Google Scholar 

  220. Wu Y, Zhuang H, Wu F, Dollimore D, Zhang B, Chen-Li W (1998) J Mat Res 13: 166

    CAS  Google Scholar 

  221. Herrmann M, Schulz I, Hermel W, Schubert C, Wendt A (2001) Z Metallkde 92: 788

    CAS  Google Scholar 

  222. Arakawa T (1987) State of the art of silicon nitride powders obtained by thermal decomposition of Si(NH)2 and the injection molding thereof. In: Somiya S, Mitomo M, Yoshimura M (eds) Silicon Nitride I. Elsevier, New York, p 81

    Google Scholar 

  223. Brink R, Lange H (1994) Investigations on the Synthesis of fine-grained, high-purity β-Si3N4 Powder by Crystallization of amorphous Precursors. In: Hoffmann MJ, Becher PF, Petzow G (eds) Silicon Nitride 93. Key Eng Mat 89–91. Trans Tech Publications Ltd, Switzerland, p 73

    Google Scholar 

  224. Borsella E, Botti S, Martelli S, Alexandrescu R, Cesile MC, Nesterenko A, Giorgi R, Turtu S, Zappa G (1997) Silicates Industriels 3: 1–2

    Google Scholar 

  225. Niihara K (1991) J Ceram Soc Jpn Int Edition 99: 945

    Google Scholar 

  226. Petzow G, Sersale R (1987) Pure & Appl Chem 59: 1673

    CAS  Google Scholar 

  227. Samsonov GV, Kulik OP, Poluschschick VS (1978) Poluschenie i Methodij analisa Nitridov. Naukowa Dumka, Kiev, p 273

    Google Scholar 

  228. Rabe T, Sontag E, Kranz G, Röhl K, Linke D (1990) Analytische Bestimmung der in Siliciumnitrid vorliegenden Phasen. In: Kriegesmann J (ed) Keramische Werkstoffe, Deutscher Wirtschaftsdienst, Köln, p 6.1.6.1

    Google Scholar 

  229. Haßler I, Förster O, Schwetz KA (2000) cfi/Ber DKG 77/7: D11

    Google Scholar 

  230. Peplinski B, Schultze D, Wenzel J (2001) Interlaboratory comparison (round robin) on the application of the Rierveld method to quantitative phase analysis by X-ray and neutron diffraction. In: Delhez R, Mittemeijer EJ (eds) Proc 7th European powder diffraction conference (EPDIC-7), Barcelona, Spain, 20th 23rd May 2000, Trans Tech Publications Ltd, Switzerland, p 124

    Google Scholar 

  231. Matern N, Riedel A, Wassermann A (1993) Mat Sci Forum 133: 39

    Google Scholar 

  232. Gazzara CP, Messier DR (1977) Ceram. Bull 56: 777

    CAS  Google Scholar 

  233. Käll PO, Ekström T (1990) J Eur Ceram Soc 6: 1191

    Google Scholar 

  234. Goeb O (2001) PhD Thesis, Technical University of Dresden

    Google Scholar 

  235. Bermudo J, Osendi MI, Fierro JLG (2000) Ceram Intern 26: 141

    CAS  Google Scholar 

  236. Hirao K, Tsuge A, Toriyama M, Kanzaki S (1999) J Am Ceram Soc 82: 3263

    Google Scholar 

  237. Kaiser G, Schubert H (1993) J Eur Ceram Soc 11: 253

    CAS  Google Scholar 

  238. Sunderkötter JD, Grallath E, Jenett M (1993) Fresenius J Anal Chem 346: 237

    Google Scholar 

  239. Peuckert M, Greil P (1987) J Mater Sci 22: 3717

    CAS  Google Scholar 

  240. Richter HJ, Herrmann M (1991) J Mat Sci Lett 10: 783

    CAS  Google Scholar 

  241. Berger LM (1993) Application of Adsorption for the Characterization of Solids in Ceramic and Related Technologies. In: Aldinger F (ed) PTM’ 93, DGM Informationsgesellschaft, Oberursel, p 677

    Google Scholar 

  242. Scarlett B (1996) Characterisation of Particles and powders. In: Brook RI (ed) Processing of Ceramics, Part I. VCH, Weinheim, p 99

    Google Scholar 

  243. Boden G, Nitsche R (1993) Sprechsaal 126: 220

    CAS  Google Scholar 

  244. Sonnefeld J (1996) Physicochem Eng Aspects 108: 27

    CAS  Google Scholar 

  245. Petzow G (1988) Pract Met 25: 53

    CAS  Google Scholar 

  246. Reed JS (1995) Principles of Ceramic Processing, John Wiley & Sons Inc, New York, p 137

    Google Scholar 

  247. Riedel G, Krüner H (1993) Si3N4 material with high strength (1400 MPa). In: Duran P, Fernandez JF (eds) Third Euro-Ceramics 3. Faenza Editrice Iberica, San Vicente, p 453

    Google Scholar 

  248. Yoshimura M, Nishioka T, Yamakawa A, Miyake M (1995) J Ceram Soc Jpn 103: 407

    CAS  Google Scholar 

  249. Brook RJ (ed) (1990) Processing of Ceramics, Part I and II, Wiley-VCH, Weinheim

    Google Scholar 

  250. Riedel G, Schubert J (1996) Keram Zeit 48: 294 and 396

    CAS  Google Scholar 

  251. Riedel G, Krieger S (1996) Keram Zeit 48: 192

    CAS  Google Scholar 

  252. Kosmac T, Novak S, Sajko M (1997) J Eur Ceram Soc 17: 427

    CAS  Google Scholar 

  253. Hackley VA (1997) J Am Ceram Soc 80: 2315

    CAS  Google Scholar 

  254. Schwelm M (1992) PhD Thesis, University of Stuttgart

    Google Scholar 

  255. Bergström L (1996) J Am Ceram Soc 79: 3033

    Google Scholar 

  256. Lange FF, Luther EP (1994) Colloidal Processing of Structurally Reliable Si3N4. In: Hoffmann MJ, Petzow G (eds) Tailoring of Mechanical Properties of Si3N4 Ceramics. NATO ASI Series E. Vol 276, Kluwer Acad Publ Dordrecht, p 3

    Google Scholar 

  257. Vieth S, Mitzner E, Finke B, Linke D (2000) cfi Ber DKG 77(10): E63

    Google Scholar 

  258. Kuzjukevies A Ishizaki K (1993) J Am Ceram Soc 76: 2373

    Google Scholar 

  259. Pugh RI, Bergström L (1994) Surface and Colloid Chemistry in Advanced Ceramics Processing. Marcel Decker Inc, New York

    Google Scholar 

  260. Wang L, Sigmund W, Aldinger F (2000) J Am Ceram Soc 83: 691 and 697

    CAS  Google Scholar 

  261. Negita K (1985) J Mater Sci Letters 4: 755

    CAS  Google Scholar 

  262. Kim J, Iseki T (1996) J Am Ceram Soc 79: 2744

    CAS  Google Scholar 

  263. Wang L, Roy S, Sigmund W, Aldinger F (1999) J Eur Ceram Soc 19: 61

    Google Scholar 

  264. Wang C, Riley FL (1992) J Eur Ceram Soc 10: 83

    CAS  Google Scholar 

  265. Luther EP, Lange FF, Pearson DS (1995) J Am Ceram Soc 78: 2009

    CAS  Google Scholar 

  266. Wang L, Sigmund W, Roy S, Aldinger F (1999) J Mater Res 14: 4562

    CAS  Google Scholar 

  267. Greil P (1982) PhD thesis, University of Stuttgart

    Google Scholar 

  268. Herrmann M, Putzky G, Siegel S, Hermel W (1992) cfi Ber DKG 69: 375

    Google Scholar 

  269. Yokoyama K, Wada S (2000) J Ceram Soc Jpn 108: 6

    CAS  Google Scholar 

  270. Neidhardt U (1993) PhD Thesis, University of Stuttgart

    Google Scholar 

  271. Riedel G, Bestgen H, Herrmann M (1998) cfi, Ber DKG, 75/12: 30

    Google Scholar 

  272. Grechkovich C, Prochazka S (1981) J Am Ceram Soc 64: C96

    Google Scholar 

  273. Messier DR, Patel PJ (1993) Chemically induced defects in oxinitride glasses. In: Chen IW, Becher PF, Mitomo M, Petzow G, Yen TS (eds) Silicon Nitride Ceramics, Mat Res Soc Symp 287; Mat Res Soc, Pittsburgh, p 365

    Google Scholar 

  274. Herrmann M, Goeb O (2001) J Eur Ceram Soc 21: 304 and 461

    Google Scholar 

  275. Yokoyama K, Wada S (1999) Effect of Sintering Atmosphere on the α/β-Transformation of Si3N4. In: Suzuki H, Komeya K, Uematsu K (eds) Novel Synthesis and Processing of Ceramics, Key Eng Mat 159–160. Trans Tech Publications, Switzerland, p 209

    Google Scholar 

  276. Yokoyama K, Wada S (2000) J Ceram Soc Jpn 108: 230 and 357

    CAS  Google Scholar 

  277. Herrmann M, Schubert C, Rendtel A, Hübner H (1998) J Am Ceram Soc 81: 1095

    CAS  Google Scholar 

  278. Pompe R, Carlson R (1983) Sintering of Si3N4 based Materials using the Powder Bed Technique. In: Riley FL (ed) Progress in Nitrogen Ceramics, NATO ASI Ser E. 65. Kluwer Academic Publishers, Dordrecht, p 219

    Google Scholar 

  279. Giachello A, Martinengo PC, Tommasini G, Popper P (1979) J Mat Sci 14: 2855

    Google Scholar 

  280. Warnecke G (ed) (2000) Zuverlässige Hochleistungskeramik. Universität Kaiserslautern, Kaiserslautern

    Google Scholar 

  281. Richerson DW (1992) Modern Ceramic Engineering. Marcel Decker Inc, New York

    Google Scholar 

  282. Pattimore J, Nishio A, Dewitte C, Unno Y, Masuda M (1997) Optimisation of Grinding for Cylindrical Silicon Nitride Components for Mass Production. In: Niihara K, Hirano S, Kanzaki S, Komeya K, Moriuaga K (eds) Ceramic Materials and Component for Engines. Japan Fine Ceramics Association, Tokyo, p 406

    Google Scholar 

  283. Greil P (1997) Near Net Shape Manufacturing of Polymer Derived Ceramics In: Baxter J, Cot L, Fordham R Gabis V, Hellot Y (eds) Euro Ceramics 5 Part 3-Key Eng Mat 132–136; Trans Tech Publications, Switzerland, p 1981

    Google Scholar 

  284. Lange FF (1979) J Am Ceram Soc 62: 428

    CAS  Google Scholar 

  285. Krämer M, Hoffmann MJ, Petzow G (1993) Acta metall mater 41: 2939

    Google Scholar 

  286. Krämer M, Hoffmann MJ, Petzow G (1993) J Am Ceram Soc 76: 2778

    Google Scholar 

  287. Dressier W (1993) PhD thesis, University of Stuttgart

    Google Scholar 

  288. Chen IW, Hwang SL (1993) Superplastic SiAlON-A Birds Eye View of Silicon Nitride Ceramics. In: Chen IW, Becher PF, Mitomo M, Petzow G, Yen TS (eds) Silicon Nitride Ceramics, Mat Res Soc Symp 287; Mat Res Soc, Pittsburgh, p 209

    Google Scholar 

  289. Bestgen H, Boberski C (1998) HTEM Analyse der Mikrostrukturentwicklung während des Flüssigphasensinterns eines Si3N4/HfO2 Composites In: Heinrich J, Ziegler G, Hermel W, Riedel H (eds) Werkstoffwoche’98 Band VII, Symposium 9, Keramik, Wiley-VCH, Weinheim, p 401

    Google Scholar 

  290. Hwang SL, Chen IW (1994) J Am Ceram Soc 77: 1711

    CAS  Google Scholar 

  291. Mitomo M, Hirotsuru H, Suematsu H, Nishimura T (1995) J Am Ceram Soc 78: 211

    CAS  Google Scholar 

  292. Herrmann M, Schulz I, Schubert C, Zalite I, Ziegler G (1998) cfi/Ber DKG 75: 38

    CAS  Google Scholar 

  293. Okamoto Y, Hirosaki N, Akimüne Y, Mitomo M (1997) J Ceram Soc Jpn 105: 476

    CAS  Google Scholar 

  294. Kitayama M, Hirao K, Toriyama M, Kanzaki S (1998) Anisotropie Ostwald Ripening in β-Si3N4 with different Lanthanide Additives. In: Messing GL, Hirano S, Lange FF (eds) Ceramic Processing Science. Ceram Transactions Ser 83: 517; (1999) J Ceram Soc Jpn 107: 930 and 107: 995

    Google Scholar 

  295. Becher PF, Sun EY, Plucknett KP, Alexander KB, Hsuch CH, Lin HAT, Waters SB, Westmoreland CG (1998) J Am Ceram Soc 81: 2821

    CAS  Google Scholar 

  296. Woetting G, Feuer H, Gugel E (1993) The Influence of Powders and Processing Methods on Microstructure and Properties of Dense Silicon Nitride. In: Chen IW, Becher PF, Mitomo M, Petzow G, Yen TS (eds) Silicon Nitride Ceramics, Mat Res Soc Symp Proc 287. Mat Res Soc, Pittsburgh, p 133

    Google Scholar 

  297. Dressier W, Kleebe HJ, Hoffmann MJ, Rüühle M, Petzow G (1996) J Eur Ceram Soc 16: 3

    Google Scholar 

  298. Kessler S, Herrmann M, Schubert C (1991) Mat Sci Forum 94–96: 821

    Google Scholar 

  299. Tien TY (1993) Silicon Nitride Ceramics-Alloy Design. In: Chen IW, Becher PF, Mitomo M, Petzow G, Yen TS (eds) Silicon Nitride Ceramics. Mat Res Soc Symp 287. Mat Res Soc, Pittsburgh, p 51

    Google Scholar 

  300. Wang LL, Tien TY, Chen IW (1998) J Am Ceram Soc 81: 2677

    CAS  Google Scholar 

  301. Emoto H, Mitomo M (1997) J Eur Ceram Soc 17: 797

    CAS  Google Scholar 

  302. Kanamaru M (1994) PhD Thesis, University of Stuttgart

    Google Scholar 

  303. Riedel G, Bestgen H, Herrmann M (1999) cfi/Ber DKG 71 No 1: 24

    Google Scholar 

  304. Björklund H, Falk LKL, Rundgren K, Wasen J (1997) J Eur Ceram Soc 17: 1285

    Google Scholar 

  305. Pyzik AJ, Beaman DR (1993) J Am Ceram Soc 76: 2737

    CAS  Google Scholar 

  306. Pyzik AJ, Carrol DF (1994) Annu Rev Mater Sci 24: 168

    Google Scholar 

  307. Ziegler G, Lehner W, Kleebe HJ (1999) Br Ceram Proc 60: 5

    Google Scholar 

  308. Bränvall P, Rundgren K (1999) Br Ceram Proc 60: 7

    Google Scholar 

  309. Kim HD, Han BD, Park DS (2001) Process to obtain Bimodal Microstructure in Silicon Nitride. Paper presented at 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures. Am Ceram Soc, Cocoa Beach, Fl

    Google Scholar 

  310. Lai KR, Tien TY (1993) J Am Ceram Soc 76: 91

    CAS  Google Scholar 

  311. Mitomo M, Uenosono J, (1992) J Am Ceram Soc 75: 103

    CAS  Google Scholar 

  312. Mitomo M (1999) In-Situ Microstructural Control in Engineering Ceramics. In: Niihara K, Sekino T, Yasuda E, Sasa T (eds) The Science of Engineering Ceramics II. Key Eng Mat 161–163. Trans Tech Publications, Switzerland, p 53

    Google Scholar 

  313. Park DS, Lee SY, Kim HD, Yoo BJ, Kim BA (1998) J Am Ceram Soc 81: 1876

    CAS  Google Scholar 

  314. Stemmer S, Roebben G, Van der Biest O (1998) Acta mater 46: 5599

    CAS  Google Scholar 

  315. Cinibulk MK, Kleebe HJ Schneider GA, Rühle M (1993) J Am Ceram Soc 76: 2081

    Google Scholar 

  316. Wang CM, Pan X, Hoffmann MJ, Cannon RM, Rühle M (1996) J Am Ceram Soc 79: 788

    CAS  Google Scholar 

  317. Lee CJ, Kim DJ, Kang ES (1999) J Am Ceram Soc 82: 753

    CAS  Google Scholar 

  318. Bando Y, Mitomo M, Kurashima K (1998) J Mater Synthesis and Processing 6: 359

    CAS  Google Scholar 

  319. Kleebe HJ (1997) J Ceram Soc Jpn 105: 453

    CAS  Google Scholar 

  320. Clarke DR (1987) J Am Ceram Soc 70: 15

    CAS  Google Scholar 

  321. Raj R, Lange FF (1981) Acta Met 29: 1993

    CAS  Google Scholar 

  322. Yoshiya M, Tanaka I, Adachi H (2000) Atomic Structure and Chemical Bonding of Intergranular film in Si3N4-SiO2 Ceramics. In: Sajgalik P, Lences Z (eds) Engineering Ceramics: Multifunctional Properties-New Perspectives. Trans Tech Publications Ltd, Switzerland, p 107

    Google Scholar 

  323. Lewis MH (1994) Crystallisation of Grain Boundary Phases in Silicon Nitride and SiAlON Ceramics. In: Hoffmann MJ, Petzow G (eds) Tailoring of Mechanical Properties of Si3N4 Ceramics. NATO ASi Ser E 276, Klüwer Academic Publishers, Dordrecht, p 217

    Google Scholar 

  324. Kleebe HJ, Hoffmann MJ, Rühle M (1992) Z Metallkde 83: 610

    CAS  Google Scholar 

  325. Okamoto K, Kleebe HJ, Ota K, Pezzotti G (1999) J Jap Inst Mat 63: 1479

    CAS  Google Scholar 

  326. Tanaka J, Kleebe HJ, Cinibulk MK, Bruley J, Clarke DR, Rühle M (1994) J Am Ceram Soc 77: 911

    CAS  Google Scholar 

  327. Kleebe HJ, Cinibulk MK, Cannon RM, Rühle M (1993) J Am Ceram Soc 76: 1969

    CAS  Google Scholar 

  328. Björklund H, Falk LKL (1997) J Eur Ceram Soc 17: 1301

    Google Scholar 

  329. Bobeth M, Clarke DR, Pompe W (1999) J Am Ceram Soc 82: 1537

    CAS  Google Scholar 

  330. Ackler HD, Chaing YM (1997) J Am Ceram Soc 80: 189

    Google Scholar 

  331. Keblinski P, Philpert SR, Wolf D, Gleiter H (1996) Phys Rev Lett 77: 2965

    CAS  Google Scholar 

  332. Golczewski JA, Seifert HJ, Aldinger F (2001) Z Metallkde 92: 695

    CAS  Google Scholar 

  333. Menon M, Chen IW (1995) J Am Ceram Soc 78: 545 and 553

    CAS  Google Scholar 

  334. Mandel H, Hoffmann MJ (1999) Br Ceram Proc 60: 11

    Google Scholar 

  335. Chen IW, Rosenfianz A (1997) Nature 389: 701

    CAS  Google Scholar 

  336. Klemm H, Herrmann M, Reich T, Schubert C, Frassek L, Wötting G, Gugel E, Nietfeld G (1998) J Am Ceram Soc 81: 1141

    CAS  Google Scholar 

  337. Mandal H (1999) J Eur Ceram Soc 19: 2349

    CAS  Google Scholar 

  338. Sheu TS (1994) J Am Ceram Soc 77: 2345

    CAS  Google Scholar 

  339. Rosenfianz A (1999) Current Opinion in Sol State & Mat Sci 4: 453

    Google Scholar 

  340. Kim J, Rosenfianz A, Chen IW (2000) J Am Ceram Soc 83: 1819

    CAS  Google Scholar 

  341. Wang CM, Hirosaki N, Mitomo M (2000) J Ceram Soc Jpn 108: 298

    CAS  Google Scholar 

  342. Herrmann M (1998) annual report 1998 Fraunhofer IKTS, Dresden

    Google Scholar 

  343. Kurama S, Herrmann M, Mandal H (2001) J Eur Ceram Soc accepted for publication

    Google Scholar 

  344. Rosenfianz A, Chen IW (1999) J Eur Ceram Soc 19: 2337

    Google Scholar 

  345. Mandal H. Thompsson DP, Ekström T (1993) J Eur Ceram Soc 12: 421

    CAS  Google Scholar 

  346. Cao GZ, Melselaar R, Ziegler G (1992) Microstructure and properties of mixed α’+β’-Sialons. In: Carlsson R, Johansson T, Kahlman L (eds) Ceramics Materials and Components for Engines. Elsevier, London, p 188

    Google Scholar 

  347. Täffner U, Carle V, Schäfer U, Predel F, Petzow G (1991) Pract Met 28: 592

    Google Scholar 

  348. Mücklich F, Ohser J, Hartmann S, Hoffmann MJ, Petzow G (1994) 3D-Characterisation of Sintered Microstructures with Prismatic Grains-A Precondition for Microstructural Modelling of Si3N4 Ceramics. In: Hoffmann MJ, Petzow G (eds) Tailoring of Mechanical Properties of Si3N4 Ceramics. NATO ASI Ser E 276. Kluwer Academic Publishers, Dordrecht, p 73

    Google Scholar 

  349. Obenaus P, Herrmann M (1990) Pract Met 27: 503

    CAS  Google Scholar 

  350. Kawashima T, Okamoto H, Yamamoto H, Kitamura A (1991) J Ceram Soc Jpn 99: 1

    Google Scholar 

  351. Becher PF, Hwang SL, Lin HT, Ticgs TN (1994) Microstructural contributions to the fracture resistance of silicon nitride ceramics. In: Hoffmann MJ, Petzow G (eds) Tailoring of Mechanical Properties of Si3N4 Ceramics, NATO ASI Ser E Vol. 276, Kluwer Academic Publishers, Dordrecht, p 87

    Google Scholar 

  352. Schneider JA, Mukherjee AK (1999) J Am Ceram Soc 82: 761

    CAS  Google Scholar 

  353. Tanaka I, Nasu S, Adachi H, Miyamoto Y, Niihara K (1992) Acta met mater 40: 1995

    CAS  Google Scholar 

  354. Wakai F (1994) Acta met 42: 1163

    CAS  Google Scholar 

  355. Wiederhorn SM, Hockey BJ, Crammer DC, Yeekley R (1993) J Mater Sci 28: 445

    CAS  Google Scholar 

  356. Chadwick MM, Jupp RS, Wilkinson DS (1993) J Am Ceram Soc 76: 385

    CAS  Google Scholar 

  357. Menon MM, Fang HAT, Wu DC, Jenkins MG, Ferber MK (1994) J Am Ceram Soc 77:1228

    CAS  Google Scholar 

  358. Gogotsi YG, Grathwohl G, Thümmler F, Yaroshenko VP, Herrmann M, Taut C (1993) J Eur Ceram Soc 11: 375

    CAS  Google Scholar 

  359. Bonnell DA (1986) PhD thesis, University of Michigan

    Google Scholar 

  360. Mandal H, Hoffmann MJ (2000) Hard and Tough α-SiALON Ceramics. In: Hampshire S, Pomeroy MJ (eds) Nitrides and Oxynitrides. Trans Tech Publications Ltd, Switzerland, p 219

    Google Scholar 

  361. Becher PF, Lin HAT, Hwang SL, Hoffmann MJ, Chen IW (1993) The influence of microstructure on the mechanical behavior of silicon nitride ceramics. In: Chen IW, Becher P, Mitomo M, Petzow G, Yen TS (eds) Silicon Nitride Ceramics-Scientific and Technological Advances. MRS Symposium Proc 287, MRS Pittsburgh, p 147

    Google Scholar 

  362. Hoffmann MJ, Schneider GA, Petzow G (1993) The potential of Si3N4 for thermal shock applications. In: Schneider GA, Petzow G (eds) Thermal Shock and Thermal Fatigue Behaviour of Advanced Ceramics. NATO ASI Ser E 241, Klüwer Academic Publishers, Dordrecht p 49

    Google Scholar 

  363. Hoffmann MJ, Petzow G (1994) Pure & Appl. Chem 66: 1807

    CAS  Google Scholar 

  364. Chen L, Kuy E, Groboth G (1998) Surface and Coatings Technology 320: 100–101

    Google Scholar 

  365. Franchini C (1981) Ceramurgia 11: 140

    CAS  Google Scholar 

  366. Mitomo M, Uemura Y (1981) J Mat Sci Let 16: 5527

    Google Scholar 

  367. Thorp JS, Sharif I (1976) J Mat Sci 11: 1494

    CAS  Google Scholar 

  368. Niihara K (2001) Nanomaterials and Nanocomposites with Multifunctionality. Paper presented at 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures. Am Ceram Soc, Cocoa Beach, Fl

    Google Scholar 

  369. Gnesin GG, Kirilenko VM, Petrovskii VA, Gervits EI, Chernavskii YA (1982) Poroshk Metall 21: 53

    Google Scholar 

  370. Katz NR (1993) Applications of Silicon Nitride Based Ceramics in the U.S. In: Chen IW, Becher PF Mitomo M, Petzow G, Yen TS (eds) Silicon Nitride Ceramics-Scientific and Technological Advances. Mat Res Soc Symp Proc 287, MRS, Pittsburgh, p 197

    Google Scholar 

  371. Subirats M, Iskander MF, White MJ, Kiggans JO (1997) J of Microwave Power and Electromagnetic Energy 32: 1997

    Google Scholar 

  372. Willert-Porada M, Dhupia G, Müller G, Nagel A (1999) Material and Technology Development for Microwave Sintering of High Performance. In: Müller G (ed) Ceramics-Ceramics-Processing, Reliability, Tribology and Wear, EUROMAT-Vol 12. Wiley-VCH, Weinheim, p 88

    Google Scholar 

  373. Watari K Seki Y, Ishizaki K (1989) J Ceram Soc Jpn Int Ed 97: 170

    Google Scholar 

  374. Kitayama M, Hirao K, Toriyama M, Kanzaki S (1999) J Am Ceram Soc 82: 3105

    CAS  Google Scholar 

  375. Watari K, Hirao K, Toriyama M, Ishizaki K (1999) J Am Ceram Soc 82: 777

    CAS  Google Scholar 

  376. Kitayama M, Hirao K, Watari K, Toriyama M, Kanzaki S (2001) J Am Ceram Soc 84:353

    CAS  Google Scholar 

  377. Li B, Pottier L, Roger JP, Fournier D, Watari K, Hirao K (1999) J Eur Ceram Soc 19:1631

    CAS  Google Scholar 

  378. Kitayama M, Hirao K, Tsuge A, Watari K, Toriyama M, Kanzaki S (2000) J Am Ceram Soc 83: 1985

    CAS  Google Scholar 

  379. Hirao K, Imamura H, Watari K, Brito ME, Toriyama M, Kanzaki S (1999) Seeded Silicon Nitride: Microstructure and Performance. In: Niihara K, Sekino T, Yasuda E, Sasa T (eds) The Science of Engineering Ceramics II, Key Eng Mater 161–163. Trans Tech Publications, Switzerland, p 469

    Google Scholar 

  380. Mitomo M, Izumi F, Greil P, Petzow G ( 1984) Bull Am Ceram Soc 65: 84

    Google Scholar 

  381. Herrmann M, Janecke-Rößler K (1999) Lab Rep, IKTS Dresden

    Google Scholar 

  382. Shermann D, Brandon D (2000) Mechanical Properties and their Relation to Microstructure. In: Riedel R (ed) Handbook of Ceramic Hard Materials. Wiley-VCH, Weinheim, p 66

    Google Scholar 

  383. Munz D, Fett T (1999) Ceramics Mechanical Properties, Failure Behaviour, Materials Selection. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  384. Quinn GD (1990) J Mater Sci 25: 4361

    CAS  Google Scholar 

  385. Wachtmann JB (1996) Mechanical Properties of Ceramics, John Wiley & Sons Inc, New York

    Google Scholar 

  386. Kondo N, Yozuuki Y, Ohji T (1999) J Am Ceram Soc 82: 1067

    CAS  Google Scholar 

  387. Tajima Y, Urashima K (1994) Improvement of Strength and Toughness of Silicon Nitride Ceramics. In: Hoffmann MJ, Petzow G (eds) Tailoring of Mechanical Properties of Si3N4 Ceramics, NATO ASI Series, Series E Vol 276. Kluwer Academic Publishers, Dordrecht, p 101

    Google Scholar 

  388. Tseng WJ, Kita H, (2000) Ceram Intern 26: 197

    CAS  Google Scholar 

  389. Matsumaru K, Ishizaki K (2001) Fabrication of Porous Materials with high Fracture Strength. In: Singh M, Jessen T (eds) 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B, (Ceram Eng Sci Proc 22). Am Ceram Soc, Westerville, OH, p 197

    Google Scholar 

  390. Sajgalik P, Dusza J, Hoffmann MJ (1995) J Am Ceram Soc 78: 2619

    Google Scholar 

  391. Evans AG (1990) J Am Ceram Soc 73: 187

    CAS  Google Scholar 

  392. Rödel J (1992) J Eur Ceram Soc 10: 143

    Google Scholar 

  393. Kleebe HJ, Pezzotti G, Ziegler G, (1999) J Am Ceram Soc 82: 1857

    CAS  Google Scholar 

  394. Rice RW (2000) Mechanical Properties of Ceramics and Composites, Marcel Dekker, New York, p 245

    Google Scholar 

  395. Faber KT, Evans AG (1983) Acta Metall 31: 565 and 577

    Google Scholar 

  396. Emoto H, Hirotsuri H (1999) Microstructure Control of Silicon Nitride Ceramics Fabricated from α Powder Containing Fine β-Nuclei. In: Niihara K, Sekino T, Yasuda E, Sasa T (eds) The Science of Engineering Ceramics II Key Eng Mat 161–163. Trans Tech Publications, Switzerland, p 209

    Google Scholar 

  397. Walker T (1996) PhD Theses, Technical University of Dresden

    Google Scholar 

  398. Li CW, Gasdaska CJ, Goldacker J, Lui SC (1993) Damade Resistance of In Situ Reinforced Silicon Nitride. In: Chen IW, Becher PF, Mitomo M, Petzow G, Yen TS (eds) Silicon Nitride Ceramics — Scientific and Technological Advances. Mat Res Soc Symp Proc 287. Materials Research Soc, Pittsburgh, p 473

    Google Scholar 

  399. Urashima K, Ikea Y, IRAs S (1998) Features of Superior Strength Si3N4 Ceramic and its Application. In: Niihara K, Hirano S, Kanzaki S, Komeya K, Miring K (eds) 6th Int Symp Ceramic Materials and Components for Engines. Jap Fine Ceramic Ass, Tokyo, p 167

    Google Scholar 

  400. Silver RF, Vienna JM (1995) J Mat Sci 30: 5531

    Google Scholar 

  401. Peterson I, Tien T (1995) J Am Ceram Soc 78: 2345

    CAS  Google Scholar 

  402. Tanaka I, Pezzotti G, Okamoto T, Miyamoto Y, Koizumi M (1992) J Am Ceram Soc 74:752

    Google Scholar 

  403. Becher PF, Sun EY, Hsueh CH, Painter GS, More KL (2000) Role of Intergranular Films in Toughened Ceramics. In: Sajgalic P, Luences Z (eds) Engineering Ceramics Multifunctional Properties — New Perspectives, Key Eng Mat 175–176. Trans Tech Publications, Switzerland, p 97

    Google Scholar 

  404. Speicher R, Schneider GA, Dreßler W, Lindemann G, Böder H, Knoblauch V (1999) Reliability of Ceramic Valve Plates for Common Rail Injection Pumps. In: Müller G (ed) Ceramic Processing, Reliability, Tribology and Wear, EUROMAT99-Vol 12, Wiley-VCH, Weinheim, p 333

    Google Scholar 

  405. Ogasawara T, Mabuchi Y (1993) J Ceram Soc Jpn Int Edition 101: 1122

    Google Scholar 

  406. Jacobs DS, Chen IW (1994) J Am Ceram Soc 77: 1153

    CAS  Google Scholar 

  407. Bhatnagar A, Hoffmann MJ, Dauskardt RH (2000) J Am Ceram Soc 83: 585

    CAS  Google Scholar 

  408. Andrievski RA (1994) High Temp-High Press 26: 451

    CAS  Google Scholar 

  409. Miao H, Qi L, Cui G (1995) Key Engin Mater 114: 135

    Google Scholar 

  410. Rice RW, Wu CC, Borchelt F (1994) J Am Ceram Soc 77: 2539

    CAS  Google Scholar 

  411. Petzow G, Hoffmann MJ (1993) Mat Sci Forum 91: 113–115

    Google Scholar 

  412. Klemm H, Tangermann K, Schubert C, Hermel W (1996) J Am Ceram Soc 79: 429

    Google Scholar 

  413. Tanaka I, Pezzotti G, Matsushita K, Miyamoto Y, Okamoto T (1992) J Am Ceram Soc 74: 752

    Google Scholar 

  414. Luecke WE, Wiederhorn SM (1999) J Am Ceram Soc 82: 2769

    CAS  Google Scholar 

  415. Lofaj F, Wiederhorn SM, Long GG, Jemian PR (2001) Tensile Creep in the next Generation Silicon Nitride. In: Singh M, Jessen T (eds) 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A (Ceram Eng Sci Proc 22). Am Ceram Soc, Westerville, OH, p 167

    Google Scholar 

  416. Ohji T (2001) Long Term Tensile at Creep Behaviours of Highly Heat-Resistant Silicon Nitride Ceramics Gas Turbines. In: Singh M, Jessen T (eds) 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A (Ceram Eng Sci Proc 22). Am Ceram Soc, Westerville, OH, p 159

    Google Scholar 

  417. Yoshida M, Tanaka K, Tsuruzono S, Tatsuki T (1999) Development of Ceramic Components for Ceramic Gas Turbine Engine (CGT302). In: Vincentini P (ed) Ceramics: Getting Into the 2000’s, Part D, Elsevier, London, p 253

    Google Scholar 

  418. Luecke WE, Wiederhorn SM, Hockey BJ, Krause RF, Long GG (1995) J Am Ceram Soc 78: 2085

    CAS  Google Scholar 

  419. Raj R, Chyung CK (1981) Acta Metall 29, 159

    CAS  Google Scholar 

  420. Thouless MD, Evans AG (1984) J Am Ceram Soc 67: 721

    CAS  Google Scholar 

  421. Ohji T, Yamauchi Y (1993) J Am Ceram Soc 76: 3105

    CAS  Google Scholar 

  422. Ohji T (1994) Tensile Creep Rupture And Subcritical Crack Growth of Silicon Nitride. In: Hoffmann MJ, Petzow G (eds) Tailoring of Mechanical Properties of Si3N4 Ceramics. Kluwer Academic Publishers, Netherlands, p 339

    Google Scholar 

  423. Marion JE, Evans AG, Drory MD, Clarke DR (1983) Acta Metall 31: 1445

    CAS  Google Scholar 

  424. Dryden JR, Kucerovsky D, Wilkinson DS, Watt DF (1989) Acta Metall 37: 2007

    CAS  Google Scholar 

  425. Klemm H, Herrmann M, Schubert C (1998) High Temperature Oxidation of Silicon Nitride Based Ceramics Materials. In: Niihara K, Hirano S, Kanzaki S, Komeya K, Morinaga K (eds) 6th Int Symp Ceramic Materials and Components for Engines. Jap Fine Ceramic Ass, Tokyo, p 576

    Google Scholar 

  426. Pezzotti G, Ota K, Kleebe HJ (1997) J Am Ceram Soc 80: 2341

    CAS  Google Scholar 

  427. Klemm H, Pezzotti G (1994) J Am Ceram Soc 77: 553

    CAS  Google Scholar 

  428. Xie RJ, Mitomo M, Zhan GD (2000) Acta mater 48: 2049

    CAS  Google Scholar 

  429. Shigegaki Y, Inamura T, Suzuki A, Sasa T (1993) High Temperature Fatigue Properties of Silicon Nitride in Nitrogen Atmosphere. In: Chen IW, Becher PF Mitomo M, Petzow G, Yen TS (eds) Silicon Nitride Ceramics-Scientific and Technological Advances. Symp Proc 287, Mat Res Soc, Pittsburgh, p 461

    Google Scholar 

  430. Lin CKJ, Jenkins MG, Ferber MK (1993) Evaluation of Tensile Static, Dynamic and Cyclic Fatigue Behaviour for a HIPed Silicon Nitride at Elevated Temperatures. In: Chen IW, Becher PF, Mitomo M, Petzow G, Yen TS (eds) Silicon Nitride Ceramics-Scientific and Technological Advances. Symp Proc 287, Mat Res Soc, Pittsburgh, p 455

    Google Scholar 

  431. Herrmann M, Klemm H, Schubert C, Hermel W (1997) Long Term Behaviour of SiC/Si3N4-Nanocomposites at 1400–1500 °C. In: Baxter J, Fordham LCR, Gabis V, Hellot Y, Lefebvre M, Le Doussal H, Sech AL (eds) Euro Ceramics V Key Eng Mat 132–136. Trans Tech Publications, Switzerland, p 1997

    Google Scholar 

  432. Jack KH (1993) SIALON CERAMICS: Retrospect and Prospect. In: Chen IW, Becher PF, Mitomo M, Petzow G, Yen TS (eds) Silicon Nitride Ceramics-Scientific and Technological Advances. Mat Res Soc Symp Proc 287. Materials Research Soc, Pittsburgh, p 15

    Google Scholar 

  433. Opila EJ, Jacobson NS (2000) Corrosion of ceramics. In: Schütze M (ed) Corrosion and Environmental Degradation. Wiley-VCH, Weinheim, p 329

    Google Scholar 

  434. Gogotsi YG, Lavrenko VA (1992) Corrosion of High Performance Ceramics. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  435. Jacobson NS (1993) J Am Ceram Soc 76: 3

    CAS  Google Scholar 

  436. Nickel KG (ed) (1994) Corrosion of Advanced Ceramics — Measurement and Modelling. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  437. Fordham RJ, Baxter DJ, Graziani T (eds) (1996) Corrosion of Advanced Ceramics, Key Eng Mater 113. Trans Tech Publications, Switzerland

    Google Scholar 

  438. Nickel KG, Gogotsi YG (2000) Corrosion of Hard Materials. In: Riedel R (ed) Handbook of Ceramic Hard Materials. Wiley-VCH, Weinheim, p 140

    Google Scholar 

  439. Telle R, Quirnbach P (eds) (1994) Korrosion und Verschleiß von Keramischen Werkstoffen: Kombinierte Belastungsfälle als Anwendungsgrenze. DGM Informationsgesellschaft, Oberursel

    Google Scholar 

  440. Richter HJ, Kaiser A, Taut C, Herrmann M (1994) Anwendungsmöglichkeiten und Grenzen von Thermodynamischen Berechnungen bei der Interpretation und Voraussage von Korrosionsprozessen. In: Telle R, Quirnbach P (eds) Korrosion und Verschleiß von Keramischen Werkstoffen: Kombinierte Belastungsfälle als Anwendungsgrenze. DGM Informationsgesellschaft, Oberursel, p 322

    Google Scholar 

  441. Wagner C (1958) J Appl Physics 29: 1295

    CAS  Google Scholar 

  442. Herrmann M, Schober R (1989) Silikattechnik 40: 260

    CAS  Google Scholar 

  443. Opila EJ, Smialek JL, Robinson RC, Fox DS, Jacobson NS (1999) J Am Ceram Soc 82: 1826

    CAS  Google Scholar 

  444. Filsinger D, Schulz A, Wiitig S, Klemm H, Taut C, Wotting G (2000) Model Cobustor to Assess the Oxidation Behavior of Ceramic Materials under Engine Conditions. In: Nelson HD (ed) Internat Gas Turbine & Aeroengine Congress & Exhibition 2000: Transactions of the ASME, ASME, New York, p 2000-GT-349

    Google Scholar 

  445. Newson DD, Pollinger JP, Twait DJ (2000) Internat Gas Turbine & Aeroengine Congress & Exhibition 2000: Transactions of the ASME, New York, p 2000-GT-533

    Google Scholar 

  446. Yokoyama K, Wada S (2000) J Ceram Soc Jpn 108: 627

    CAS  Google Scholar 

  447. Klemm H, Herrmann M, Schubert C (2000) J Eng. Gas Turbines and Power 122: 13

    CAS  Google Scholar 

  448. Klemm H, Herrmann M, Schubert C (1996) The Influence of the Grain Boundary Phase Composition on the High Temperature Properties of Silicon Nitride Materials. In: Parilak L, Danninger H, Dusza J, Weiss B (eds) Proc Int Conf Deformation and Fracture in Structural PM Materials, IMR SAS Kosice 2: 75

    Google Scholar 

  449. Andrews P, Riley FL (1991) J Eur Ceram Soc 7: 125

    CAS  Google Scholar 

  450. O’Meara C, Sjödberg J (1997) J Am Ceram Soc 80: 1491

    Google Scholar 

  451. Ricoult-Barkhausen M, Gogotsi YG (1996) Identification of Oxidation Mechanisms in Silicon Nitride Ceramics by TEM. In: Fordham PJ, Baxter DJ, Graziani T (eds) Corrosion of Advanced Ceramics. Key Eng Mat 113. Trans Tech Publications, Switzerland, p 81

    Google Scholar 

  452. Luthra KL (1994) Theoretical Aspects of the Oxidation of Silica-Forming Ceramics. In: Nickel KG (ed) Corrosion of Advanced Ceramics — Measurement and Modelling. Kluwer Academic Publishers, Dordrecht, p 23

    Google Scholar 

  453. Luthra KL (1991) J Am Ceram Soc 74: 1095

    CAS  Google Scholar 

  454. Ogbuji LUJT (1994) The Oxidation Process in Silicon Nitride. In: Nickel KG (ed) Corrosion of Advanced Ceramics — Measurement and Modelling. Kluwer Academic Publishers, Dordrecht, p 117

    Google Scholar 

  455. Ogbuji LUJT, Bryan SR (1995) J Am Ceram Soc 78: 1272

    CAS  Google Scholar 

  456. Ogbuji LUJT, Opila EJ (1995) J Electrochem Soc 142: 925

    CAS  Google Scholar 

  457. Taut C (1994) PhD thesis, University of Dresden

    Google Scholar 

  458. Tressler RE (1990) Environmental Effects on Long Therm Reliability of SiC and Si3N4. In: Tressler RE, McNallan M (eds) Ceramic Transactions 10, Am Ceram Soc, Westerville, OH, p 99

    Google Scholar 

  459. Van der Biest O, Weber C (1994) Influence of Oxidation on Long Term Reliability of Silicon Nitride. In: Nickel KG (ed) Corrosion of Advanced Ceramics — Measurement and Modelling. Kluwer Academic Publishers, Dordrecht, p 453

    Google Scholar 

  460. Nishimura N, Masuo E, Takita K (1991) Effect of Microstructural Oxidation on the Strength of Silicon Nitride after High Temperature Exposure. In: Carlsson T, Johansson T, Kahlman T (eds) Proc 4th Int Symp Ceram Mater & Components for Engines. Elsevier, London, p 1139

    Google Scholar 

  461. Mukundhan P, Wu P, Du HH (1999) J Am Ceram Soc 82: 226

    Google Scholar 

  462. Herrmann M, Klemm H, Göbel B, Schubert C, Hermel W (1999) SiC/Si3N4 Nanocomposites with Excellent High Temperature Long-Term Behaviour. In: Niihara, Sekino, Yasuda E, Sasa T (eds) The Science of Engineering Ceramics II, Key Eng Mat 161–163. Trans Tech Publications, Switzerland, p 377

    Google Scholar 

  463. Watanabe M, Shimamori T, Noda Y (1992) The High Temperature Properties of Sc2O3 doped Si3N4. In: Ishizaki K (ed) Grain Boundary Controlled Properties of Fine Ceramics, Elsevier, London, p 199

    Google Scholar 

  464. Nordberg LO, Käll PO, Nygren M (1996) A Mathematical Analysis of the Non-Parabolic Oxidation Behaviour of β-SiALON Matrices and Composites. In: Fordham PJ, Baxter DJ, Graziani T (eds) Corrosion of Advanced Ceramics, Key Eng Mat 113. Trans Tech Publications, Switzerland, p 39

    Google Scholar 

  465. Patel JK, Thompson DP (1988) Br Ceram Trans J. 87: 70

    CAS  Google Scholar 

  466. Baxter DJ, Graziani T, Wang HM, McCauley RA (1998) J Eur Ceram Soc 18: 2323

    CAS  Google Scholar 

  467. Ernstberger U (1985) PhD Thesis, University of Karlsruhe

    Google Scholar 

  468. Ernstberger U, Grathwohl G, Thümmler F (1987) Int J High Techn Ceram 3: 43

    CAS  Google Scholar 

  469. Babini GN, Belosi A, Vincenzini P (1983) J Mater Sci 18: 231

    CAS  Google Scholar 

  470. Loehman RE (1989) Am Ceram Soc Bull 68: 891

    CAS  Google Scholar 

  471. Loehman RE (1999) Key Engin Mat 657: 161–163

    Google Scholar 

  472. Tönshoff HK, Denkena B (1991) J Society of Tribologists and Lubrication Engineers 47: 772

    Google Scholar 

  473. Miao H, Qi, L, Cui G (1995) Silicon Nitride Ceramic Cutting-Tools and their Applications. In: Low IM, Li XS (eds) Advanced Ceramic Tools for Machining Application — II Key Engineering Materials 114, Trans Tech Publications Ltd, Switzerland, p 135

    Google Scholar 

  474. Voitovich RF (1971) Tugoplavkie Soedineniya, termoddinamicheskie Kharakteriustiki, Naukova Duma, Kiev

    Google Scholar 

  475. Samsonov GV, Vinitskii IM (1980) Handbook of Refractory Compounds, Plenum, New York, p 400

    Google Scholar 

  476. Feld G (1969) Sprechsaal 102: 1098

    CAS  Google Scholar 

  477. Watanabe M, Usami T, Takasu S, Matsuo S, Toji E (1983) Jap J Appl Phys 122: 185

    Google Scholar 

  478. Li JG, Hausner H (1992) J Eur Ceram Soc 9: 101

    CAS  Google Scholar 

  479. Li JG, Hausner H (1990) Benetzung von anorganischen Materialien durch Siliciumschmelzen, Abschlußbericht, TU Berlin, p 37

    Google Scholar 

  480. Swartz JC (1976) J Am Ceram Soc 59: 272

    CAS  Google Scholar 

  481. Singh RN, Tuohig WD (1975) J Am Ceram Soc 58: 70

    CAS  Google Scholar 

  482. Smith PL, White J (1983) Trans J Br Ceram Soc 82: 23

    CAS  Google Scholar 

  483. Belyi VI (1988) Mater Sci Mnogr 34: 126

    Google Scholar 

  484. David J (1972) Rev Chim Miner 9: 717

    CAS  Google Scholar 

  485. Leimer G, Gugel E (1975) Z Metallkd 66: 570

    CAS  Google Scholar 

  486. Panacjuk AD, Fomenko VS, Glebova GG (1986) Stoikost nemetallischeskich materialov b rasplavach. Naukova Dumka, Kiev, p 175

    Google Scholar 

  487. Jelacic C, Dervisbegovic H (1974) Bull Soc Fr Ceram 105: 17

    CAS  Google Scholar 

  488. Felten RP (1974) Sprechsaal 107: 92, 101

    CAS  Google Scholar 

  489. Naka M (1991) Ultramicroscopy 39: 128

    CAS  Google Scholar 

  490. Naka M, Kubo M, Mori H, Okamoto I (1990) Koon Gakkaishi 16: 225

    CAS  Google Scholar 

  491. Gilde W (1953) Metall Giessereitech 3: 324

    CAS  Google Scholar 

  492. Schwabe U, Wolff L, Ziegler G (1988) Klei/Glas/Keram 9: 231

    CAS  Google Scholar 

  493. Feld H, Gugel E, Nitzche HG (1969) Werkst Korros 20: 571

    CAS  Google Scholar 

  494. Ljungberg L, Warren R (1989) Ceram Eng Sci Proc 10: 1655

    CAS  Google Scholar 

  495. Brunken R (1970) Werkstatt Betr 103(1): 65

    CAS  Google Scholar 

  496. Schuster JC, Weitzer F, Bauer J, Nowotny H (1988) Mater Sci Eng A 105/106: 201

    Google Scholar 

  497. Weitzer F, Schuster JC, Bauer J, Jounel B (1991) J Mater Sci 26: 2076

    CAS  Google Scholar 

  498. Naidich YV, Zhuravlev VS, Frumina NI, Kostyuk BD, Krasovskaya NA Ostrovskii VG (1988) Poroshk Metall 11: 58

    Google Scholar 

  499. Kunz KP, Sarin VK, Davis RF Bryan SR (1988) Mater Sci Eng A 105/106: 47

    Google Scholar 

  500. Dummler W, Weber S, Tete C, Scherrer S (1999) J Mater Sci Lett 18: 193

    CAS  Google Scholar 

  501. Akselsen OM (1992) J Mat Sci 27: 1989

    CAS  Google Scholar 

  502. Raic KT (1999) Ceram Int 26/1: 19

    Google Scholar 

  503. Shimoo T, Okamura K, Shibata D (2000) J Mater Sci 35/21: 5485

    Google Scholar 

  504. Schuster JC (1988) J Mat Sci 23: 2792

    CAS  Google Scholar 

  505. Glemser O, Beltz K, Naumann P (1957) Z Anorg Allg Chem 291: 51

    CAS  Google Scholar 

  506. Shimoo T, Okamura K, Yamasaki T (1999) J Mater Sci 34: 5525

    CAS  Google Scholar 

  507. Weitzer F, Schuster JC (1987) J Solid State Chem 70: 178

    CAS  Google Scholar 

  508. Komeya K, Meguro T, Atago S, Lin CH, Abe Y, Komatsu M (1999) Corrosion Resistance of Silicon Nitride Ceramics. In: Niihara K, Sekino T, Yasuda E, Sasa T (eds) The Science of Engineering Ceramics II. Key Eng Mat 161–163, Trans Tech Publications, Switzerland, p 235

    Google Scholar 

  509. Hollstein T, Graas T, Bundschuh K, Schütze M (1998) Keram Zeitschrift 50: 416

    CAS  Google Scholar 

  510. Sato T, Tokunaga Y, Endo T, Shimada M, Komeya K (1988) J Mat Sci 23: 3440

    CAS  Google Scholar 

  511. Iio S, Okada A, Akira A, Tetsuo A, Masahiro Y (1992) J Ceram Soc Jpn Int Edition 100:954

    Google Scholar 

  512. Herrmann M, Schubert C, Michael G (1999) Korrosionsstabile keramische Werkstoffe für Anwendungen in Wälzlagern und im Anlagenbau. In: cfi DKG Berichte 14: 130

    CAS  Google Scholar 

  513. Herrmann M, Michael G (1999) Br Ceram Proc 60/1: 455

    Google Scholar 

  514. Okada A, Yoshimura M (1996) Mechanical Degradation of Silicon Nitride Ceramics in Corrosive Solutions of Boiling Sulphuric Acid. In: Fordham RJ, Baxter DJ, Graziani T (eds) Corrosion of Advanced Ceramics, Key Eng Mater 113. Trans Tech Publications, Switzerland, p 227

    Google Scholar 

  515. Gogozi YG, Lavrenko VA (1992) Springer Verlag, Berlin, p 76

    Google Scholar 

  516. Shimada M, Sato T (1989) Ceram Trans 10: 355

    Google Scholar 

  517. Fang Q, Sidky PS, Hocking MG (1997) Corr Sci 39: 511

    CAS  Google Scholar 

  518. Kanbara K, Uchida N, Uematsu K, Kurita T, Yoshimoto K, Suzuki Y (1993) Corrosion of Silicon Nitride Ceramics by Nitric Acid. In: Chen IW, Becher PF, Mitomo M, Petzow G, Yen TS (eds) Silicon Nitride Ceramics, Mat Res Soc Symp Proc 287. Mat Res Soc, Pittsburgh, p 533

    Google Scholar 

  519. Wötting G, Herrmann M, Michael G, Siegel S, Frassek L (1999) WO99/20579

    Google Scholar 

  520. Sharkawy SW, El-Aslabi AM (1998) Corros Sci 40: 1119

    CAS  Google Scholar 

  521. Sato T, Tokunaga Y, Endo T, Shimada M, Komeya K, Nishida K, Komatsu M, Kameda T (1988) J Mat Sci 23: 3440

    CAS  Google Scholar 

  522. Sato T, Murakami T, Shimada E, Komeya K, Komeda T, Komatsu M (1991) J Mat Sci 26: 1749

    CAS  Google Scholar 

  523. Yoshimura M, Yamamoto S (1995) Seramikkusu 30: 995

    CAS  Google Scholar 

  524. Oda K, Yoshio T, Miyamoto Y, Koizumi M (1993) J Am Ceram Soc 76: 1365

    CAS  Google Scholar 

  525. Hollstein T (1999) Adv Sci Technol 13: 433

    CAS  Google Scholar 

  526. Sato T, Sato S, Tamura K, Okuwaki A (1992) J Br Ceram Trans 91: 117

    CAS  Google Scholar 

  527. Herrmann M, Michael G, Schubert C, Adler J, Krell A (1998) Final report MATECH project 03N2002 F

    Google Scholar 

  528. Ye J, Furuya K, Misono Y, Matsuo K, Munakata F, Ishikawa I, Akimune Y (2000) J Luminescence 574: 87–89

    Google Scholar 

  529. Shen Z, Nygren M, Halenius U (1997) J Mat Sci Lett 16: 263

    CAS  Google Scholar 

  530. Pechenik A, Piermarini GJ (1992) J Am Ceram Soc 75: 3283

    CAS  Google Scholar 

  531. Rouxel T, Piriou B (1996) J Appl Phys 79: 9074 378.

    CAS  Google Scholar 

  532. Keßler S (1993) PhD Thesis, University of Stuttgart

    Google Scholar 

  533. Clarke DR (1989) Mat Sci. Forum 47: 110

    CAS  Google Scholar 

  534. Yamakawa A, Miyake M, Ishizaki K (1994) J Ceram Soc Jpn 102: 339

    Google Scholar 

  535. Lewis HM (1993) Sialons and Silicon Nitrides; Microstructural Design and Performance. In: Chen IW, Becher PF, Mitomo M, Petzow G, Yen TS (eds) Silicon Nitride Ceramics — Scientific and Technological Advances, Mat Res Soc Symp Proc 287, MRS, Pittsburgh, p 159

    Google Scholar 

  536. Kessler H, Herrmann M, Pompe W (1995) Acta metall mater 43: 2789

    CAS  Google Scholar 

  537. Keßler H (1995) PhD thesis, Technical University of Dresden

    Google Scholar 

  538. Carborundum Co. (1952) US Patent No 2618565

    Google Scholar 

  539. Moulson AJ (1979) J Mat Sci 14: 1017.

    CAS  Google Scholar 

  540. Heinrich JG, Krüner H (1994) Silicon Nitride Materials for Engine Applications. In: Hoffmann MJ, Petzow G (eds) Tailoring of Mechanical Properties of Si3N4 Ceramics. NATO ASI Series E, Vol 276, Kluwer Academic Publishers, Dordrecht, p 19

    Google Scholar 

  541. Ziegler G (1985) Z Werkstofftechnik 16: 12, 45, 81

    CAS  Google Scholar 

  542. Mikijeli B, Mangels J (2001) SRBSN Material Development For Automotive Applications. In: Heinrich JG, Aldinger F (eds) Ceramic Materials Components for Engines, Wiley-VCH, Weinheim, p 393

    Google Scholar 

  543. Riley FF (1983) Silicon Nitridation. In: Riley FF (ed) Progress in Nitrogen Ceramics. Martinus Niihoff Publishers, Dordrecht, p 121

    Google Scholar 

  544. Jennings HM, Richmann MH (1976) J Mat Sci 11: 285

    Google Scholar 

  545. Ziegler G, Heinrich JG, Wötting G (1987) J Mat Sci 22: 3041

    CAS  Google Scholar 

  546. Rahaman MN, Moulson AJ (1984) J Mat Sci 19: 189

    CAS  Google Scholar 

  547. Jennings M (1983) J Mat Sci 18: 951

    CAS  Google Scholar 

  548. Atkinson A, Moulson AJ, Roberts EW (1976) J Am Ceram Soc 59: 285

    CAS  Google Scholar 

  549. Rossetty GA, Denkewicz RP (1989) J Mat Sci 24: 3081

    Google Scholar 

  550. Li WB, Lei BQ, Lindback T (1997) J Eur Ceram Soc 17: 1119

    CAS  Google Scholar 

  551. Campos-Loriz D, Riley FL (1978) J Mat Sci 13: 1125

    CAS  Google Scholar 

  552. Sheldon BW, Rankin J, Haggerty JS (1995) J Am Ceram Soc 78: 1624

    CAS  Google Scholar 

  553. Mangels JA, Tennenhouse GJ (1980) Am Ceram Soc Bull 59: 1216

    CAS  Google Scholar 

  554. Herrmann M, Heß S, Pabst S, Richter HJ, Hermel W (1990) Keram Zeitschr 42: 250

    CAS  Google Scholar 

  555. Wötting G (1999) Final report BMBF-project 03N2002B

    Google Scholar 

  556. Liu H, Hsu SM (1996) J Am Ceram Soc 79: 2452

    CAS  Google Scholar 

  557. Schober R, Richter HJ (1999) Composite ceramics based on silicon nitride or aluminium nitride. In: Krams J (ed) Proceedings Biennial Worldwide Congress UNITECR’ 99, Verlag Stahleisen, Düsseldorf, p 198

    Google Scholar 

  558. Isomura K, (1990) J Am Ceram Soc 73: 624

    Google Scholar 

  559. Petrovsky VY, Rak ZS (2001) J Eur Ceram Soc 21: 219

    CAS  Google Scholar 

  560. Petrovsky VY, Rak ZS (2001) J Eur Ceram Soc 21: 237

    CAS  Google Scholar 

  561. Gogotsi YG (1994) J Mat Sci 29: 2541

    CAS  Google Scholar 

  562. Sigulinski F, Boskovic S (1999) Ceram Intern 25: 41

    CAS  Google Scholar 

  563. Liu CC (2000) J Ceram Soc Jpn 108: 46

    Google Scholar 

  564. Yamada K, Kamiya N (1999) Mat Sci Eng 261: 270

    Google Scholar 

  565. Herrmann M, Bales A, Bach E, Leuteritz U (unpublished)

    Google Scholar 

  566. Kawamura H (1999) New Perspectives in Engine Applications of Engineering Ceramics. In: Niihara K, Sekino T, Yasuda E, Sasa T (eds) The Science of Engineering Ceramics II, Key Eng Mat 161–163. Trans Tech Publications, Switzerland, p 9

    Google Scholar 

  567. Veprek S (2000) Nanostructured Superhard Materials. In: Riedel R (ed) Handbook of Ceramic Hard Materials. Wiley VCH, Weinheim, p 104

    Google Scholar 

  568. Pezzotti G, Tanaka I, Ikuhara Y, Sakai M, Nishida T (1994) Scripta Met Et Mat 31: 403

    CAS  Google Scholar 

  569. Seifert HJ (1993) PhD Thesis, University of Stuttgart

    Google Scholar 

  570. Herrmann M, Balzer B, Schubert C, Hermel W (1993) J Eur Ceram Soc 12: 287

    CAS  Google Scholar 

  571. Huang JL, Chiu HL, Lee MT (1994) J Am Ceram Soc 77: 705

    CAS  Google Scholar 

  572. Herrmann M, Schubert C, Hermel W, Meißner E, Ziegler G (1996) cfi/Ber DKG 73: 434

    Google Scholar 

  573. Fricke M, Nonninger R, Schmidt H (2000) Adv Eng Mat 2(10): 647

    CAS  Google Scholar 

  574. Lee BT, Yoon YJ, Lee KH (2001) Mater Lett 47: 71

    CAS  Google Scholar 

  575. Wang CM (1995) J Mater Sci 30: 3222

    CAS  Google Scholar 

  576. Iwamoto Y, Kikuta K, Hirano S (2000) J Ceram Soc Jpn 108(4): 350 and 1072

    CAS  Google Scholar 

  577. Nagaoka T, Yasuoka M, Hirao K, Kanzaki S (1992) J Ceram Soc Jpn 100: 612

    Google Scholar 

  578. Bellosi A, Guicciardi S, Tampieri A (1992) J Eur Ceram Soc 9: 83

    CAS  Google Scholar 

  579. Liu CC, Huang JL (2000) Brit Ceram Trans 99: 149

    CAS  Google Scholar 

  580. Akimune Y, Munakata F, Hirosaki N, Okamoto Y (1998) J Ceram Soc Jpn 106: 75

    CAS  Google Scholar 

  581. Opsommer A, Gomez E, Castro F (1998) J Mater Sci 33: 2583

    CAS  Google Scholar 

  582. Woydt M, Skopp A, Habig KH (1991) Wear 148: 377

    CAS  Google Scholar 

  583. Skopp A (1993) PhD Thesis, University of Berlin

    Google Scholar 

  584. Xu J, Kato K (1997) Wear 202: 165

    CAS  Google Scholar 

  585. Popp M, Sternagel R, Pfeifer W, Blug B, Meier S, Wötting G, Frasseck L (2000) Hybrid-and Ceramic Rolling Bearings with Modified Surface and Low friction Rolling Contact. In: Müller G (ed) Ceramics — Processing, Reliability, Triboloy and Wear, Euromat 99 Vol 12. Wiley VCH, Weinheim, p 449

    Google Scholar 

  586. Lences Z, Sajgalik P, Toriyama M (2000) J Eur Ceram Soc 20: 347

    CAS  Google Scholar 

  587. Yeh CH, Hon MH (1996) Ceram Intern 23: 361

    Google Scholar 

  588. Lange FF (1973) J Am Ceram Soc 56: 445

    CAS  Google Scholar 

  589. Herrmann M, Schubert C, Klemm H (1996) Nanocompositkeramik: Übersicht über Werkstoffkonzepte, Herstellungstechnologien und spezifische Eigenschaften. In: Kriegesmann J (ed) Technische Keramische Werkstoffe, Deutscher Wirtschaftsdienst, Köln, Chap 4.4.3.0.

    Google Scholar 

  590. Greil P, Petzow G, Tanaka H (1987) Ceram Int 13: 19

    CAS  Google Scholar 

  591. Hockey BJ, Widerhorn SM, Liu W, Balfdoni G, Buljan ST (1991) J Mater Sci 26: 3931

    CAS  Google Scholar 

  592. Kodama H, Sakamoto H, Miyoshi T (1989) J Am Ceram Soc 72: 551

    CAS  Google Scholar 

  593. Laughner JW, Bhatt RT (1989) J Am Ceram Soc 72: 2017

    CAS  Google Scholar 

  594. Becher PF, Hsueh CH, Angelini P, Tiegs TN (1988) J Am Ceram Soc 71: 1050

    CAS  Google Scholar 

  595. Campbell GH, Rühle M, Dalgleish BJ, Evans AG (1990) J Am Ceram Soc 73: 521

    CAS  Google Scholar 

  596. Birchall JD, Stanley DR, Mockford MJ, Pigott GH, Pinto PJ (1988) J Mat Sci Lett 7: 350

    CAS  Google Scholar 

  597. Pezzoti G (1993) J Am Ceram Soc 76: 1313

    Google Scholar 

  598. Rendtel A, Hübner H, Schubert C (1995) Silicates Industriels 60: 305

    CAS  Google Scholar 

  599. Niihara K, Izaki K, Kawakami T (1990) J Mat Sci Lett 10: 112

    Google Scholar 

  600. Sternitzke M (1997) J Eur Ceram Soc 17: 1061

    CAS  Google Scholar 

  601. Izaki K, Hakkei K, Ando K, Kawakami KT, Niihara K (1988) Fabrication and Mechanical Properties of Si3N4/SiC Composites from Fine, Amorphous Si-C-N-Powder Precursors. In: Mackenzie D (ed) Ultrastructural Processing of Advanced Ceramics, John Wiley & Sons Inc, New York, p 891

    Google Scholar 

  602. Hirano T, Niihara K (1995) Mater Lett 22: 249; (1996) 26: 285

    CAS  Google Scholar 

  603. Lavedrine A, Bahloul D, Coursat P (1991) J Eur Ceram Soc 8: 221

    CAS  Google Scholar 

  604. Palchevskis E, Grabis J, Millers T (1993) Fine Si3N4-SiC powders; Obtaining and Characteristics. In: Aldinger F (ed) PTM’ 93, DGM Informationsgesellschaft, Oberursel, p 657

    Google Scholar 

  605. Cauchetier M, Croix O, Luce M (1991) J Eur Ceram Soc 8: 215

    CAS  Google Scholar 

  606. Westerheide R, Wöting G, Schmitz HW (1998) SiC-Si3N4 Nanocomposite-Potential und wirtschaftliche Realisierung. In: Kriegesmann I (ed) Keramische Werkstoffe 84erg.-lfg. Deutscher Wirtschaftsdienst, Köln, Chap 4.4.3.2

    Google Scholar 

  607. Wötting G, Caspers B, Gugel E, Westerheide R (2000) Transactions of the ASME 122: 8

    Google Scholar 

  608. Ishizaki K, Yanai T (1995) Silicates Industriels 60: 215

    CAS  Google Scholar 

  609. Sajgalik P, Hnatko M, Lences Z, Warbichler P, Hofer F (2001) Z Metallkd 92: 937

    CAS  Google Scholar 

  610. Riedel R, Klebe HJ, Schönfelder H, Aldinger F (1995) Nature 374: 526

    CAS  Google Scholar 

  611. Riedel R, Seher M, Mayer J, Szabo DV (1995) J Eur Ceram Soc 15: 703 and 717

    CAS  Google Scholar 

  612. Haluschka C, Kleebe HJ, Franke R, Riedel R (2000) J Eur Ceram Soc 20: 1355

    CAS  Google Scholar 

  613. Haluschka C, Engel C, Riedel R (2000) J Eur Ceram Soc 20: 1365

    CAS  Google Scholar 

  614. Sajgalik P, Hnatko M, Lofai F, Hvizdos P, Dusza J, Warbichler P, Hofer F, Riedel R, Lecomte E, Hoffmann MJ (2000) J Eur Ceram Soc 20: 453

    CAS  Google Scholar 

  615. Ukyo Y, Kandori T, Wada S (1993) J Ceram Soc Jpn Int Ed 101: 1398

    Google Scholar 

  616. Niihara K, Suganuma K, Nikahira K, Izaki K (1990) J Mater Sci Lett 9: 598

    CAS  Google Scholar 

  617. Pan X, Mayer J, Rühle M, Niihara K (1994) J Am Ceram Soc 77: 3039

    Google Scholar 

  618. Cheong DS, Hwang KT, Kim CS (1999) J Am Ceram Soc 82: 981

    CAS  Google Scholar 

  619. Rouxel T, Wakai F (1992) J Am Ceram Soc 75: 2363

    CAS  Google Scholar 

  620. Rendtel A, Hübner H, Herrmann M, Schubert C (1998) J Am Ceram Soc 81: 1109

    CAS  Google Scholar 

  621. Ramoul-Badabache K, Lancin M (1992) J Eur Ceram Soc 10: 369

    Google Scholar 

  622. Klemm H, Tangermann K, Reich T, Herrmann M, Schubert C, Hermel W (1995) High-Temperature Properties of Silicon Nitride Molybdenum Silicide Composites. In: Bellosi A (ed) Fourth Europ Ceramics, Vol 4, Grupp Editoriale faenca Editrice, Faenza, p 233

    Google Scholar 

  623. Pezotti G, Sakai M (1994) J Am Ceram Soc 77: 3039

    Google Scholar 

  624. Rendtel A, Hübner H, Herrmann M (1995) Creep Behaviour of Si3N4/SiC-Nanocomposite Materials. In: Bellosi A (ed) Fourth Europ Ceramics Vol 4, Grupp Editoriale faenca Editrice S p.A, Faenza, p 225

    Google Scholar 

  625. Klebe HJ, Pezzotti G, Rühle M (1998) J Ceram Soc Jpn 106: 17

    Google Scholar 

  626. Rendtel P, Rendtel A Hübner H, Herrmann M (1999) J Eur Ceram Soc 19: 217

    CAS  Google Scholar 

  627. Gommes JR, Osendi MI, Miranzo P, Oliveira FJ, Silva RF (1999) Wear 222: 233–235

    Google Scholar 

  628. Sawagushi A, Toda K, Niihara K (1991) J Am Ceram Soc 74: 1142

    Google Scholar 

  629. Kanzaki S, Brito ME, Valecillos MC, Hirao K, Toriyama M (1997) J Eur Ceram Soc 17:1841

    CAS  Google Scholar 

  630. Akimune Y, Munakata F, Matsuo K, Okamoto Y, Hirosaki N, Satoh C (1999) J Ceram Soc Jpn 107: 1180

    CAS  Google Scholar 

  631. Imamura H, Hirao K, Brito ME, Toriyama M, Kanzaki S (2000) J Am Ceram Soc 83: 495

    CAS  Google Scholar 

  632. Hirao K, Nagaoka T, Brito ME, Kanzaki S (1994) J Am Ceram Soc 77: 1857

    CAS  Google Scholar 

  633. Teshima H, Hirao K, Toriyama M, Kanzaki S (1999) J Ceram Soc Jpn 107: 1216

    CAS  Google Scholar 

  634. Hirao K, Ohashi M, Brito ME, Kanzaki S (1995) J Am Ceram Soc 78: 1687

    CAS  Google Scholar 

  635. Lee SY, Amoako-Appiagyei K, Kim HD (1999) J Mater Res 14: 178

    CAS  Google Scholar 

  636. Hirosaki N, Okamoto Y, Munakata F, Akimune Y (1999) J Eur Ceram Soc 19: 2183

    CAS  Google Scholar 

  637. Kitayama M, Hirao K, Toriyama M, Kanzaki S (2000) J Ceram Soc Jpn 108: 646

    CAS  Google Scholar 

  638. Jack KH (2000) Nitrogen Ceramics for Engine Applications. In: Hampshire S, Pomoroy MJ (eds) Nitrides and Oxynitrides, Mat Sci Forum 325–326. Trans Tech Publications, Switzerland, p 255

    Google Scholar 

  639. Katz NR (1997) Industrial Ceram 17: 158

    CAS  Google Scholar 

  640. Savitz M (1999) Am Bull Ceram Soc 78 No. 1: 53

    CAS  Google Scholar 

  641. Brandt G (2001) Ceramic Cutting Tools. In: Heinrich JG, Aldinger F (eds) Ceramic Materials and Components for Engines. Wiley-VCH, Weinheim, p 21

    Google Scholar 

  642. Bayer O, Streit E (2000) Keram Zeit 52: 1092

    CAS  Google Scholar 

  643. Cundill RT (1997) Impact Resistance of Silicon Nitride Balls. In: Niihara K, Hirano S, Kanzaki S, Komeya K, Morinaga K (eds) Ceramic Materials and Components for Engines. Jap Fine Ceramic Assoc, Tokyo, p 556

    Google Scholar 

  644. Wagemann A (2000) Keram Zeit 52: 503

    CAS  Google Scholar 

  645. Guangchuan L, Jinsheng L, Xingua G (1999) Industrial Ceram 19: 17

    Google Scholar 

  646. Gugel E, Wötting G (1999) Industrial Ceram 19: 196

    CAS  Google Scholar 

  647. Woetting G, Frassek L, Leimer G, Schönfelder L (1993) cfi/Ber DKG 70: 287

    CAS  Google Scholar 

  648. Mandler WF (2001) Commercial Applications for Advanced Ceramics in Diesel Engines. In: Singh M, Jessen T (eds) 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A (Ceram Eng Sci Proc 22). Am Ceram Soc, Westerville, OH, p 3

    Google Scholar 

  649. Mandler WF (1997) Ceramic Successes in Diesel Engines. In: Niihara K, Hirano S, Kanzaki S, Komeya K, Morinaga K (eds) Ceramic Materials and Components for Engines. Jap Fine Ceramic Assoc, Tokyo, p 137

    Google Scholar 

  650. Kamo R, Mavinahally NS, Kamo L, Bryzik W, Reid M (1997) Experimental Heat Release of Insulated Turbocharged Diesel Engine. In: Niihara K, Hirano S, Kanzaki S, Komeya K, Morinaga K (eds) Ceramic Materials and Components for Engines. Jap Fine Ceramic Assoc, Tokyo, p 146

    Google Scholar 

  651. Wötting G, Hennicke J, Feuer H, Thiemann KH, Vollmer D, Fechter E, Sticher F, Geyer A (2001) Reliability and Reproducibility of Silicon Nitride Valves: Experiences of a Field Test. In: Heinrich JG, Aldinger F (eds) Ceramic Materials and Components for Engines. Wiley VCH, Weinheim, p 181

    Google Scholar 

  652. Savitz M (1999) Bull Am Ceram Soc 78 No. 3: 52

    CAS  Google Scholar 

  653. Meiser M (2001) Current Status of Structural Ceramics. Paper presented at the 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures. Am Ceram Soc, Cocoa Beach, Fl

    Google Scholar 

  654. Matsuura T, Kawai C, Yamakawa A (1997) Sumitomo Electric Technical Review 43: 77

    Google Scholar 

  655. Kawai C, Matsuura T, Yamakawa A (1999) J Mater Sci 43: 893

    Google Scholar 

  656. Kawamura H (2001) Practical use of Ceramic Components and Ceramic Engines. In: Heinrich JG, Aldinger F (eds) Ceramic Materials and Components for Engines. Wiley-VCH, Weinheim, p 27

    Google Scholar 

  657. Yoshida M, Tanaka K, Tsuruzono S, Tatsumi T (1999) Industrial Ceram 19: 188

    CAS  Google Scholar 

  658. Der Kochherd der Zukunft arbeitet mit Si3N4-Platten (1999) In: cfi/Ber DKG, 76, No.4: D18–20

    Google Scholar 

  659. Aberle AG (2001) Solar Energy Materials & Solar Cells 65: 239

    CAS  Google Scholar 

  660. Tsukumura K, Kamo K (2000) J Ceram Soc Jpn 108: 882

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petzow, G., Herrmann, M. (2002). Silicon Nitride Ceramics. In: Jansen, M. (eds) High Performance Non-Oxide Ceramics II. Structure and Bonding, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45623-6_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45623-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43132-9

  • Online ISBN: 978-3-540-45623-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics