Skip to main content

SiGe:C Heterojunction Bipolar Transistors: From Materials Research to Chip Fabrication

  • Chapter
  • First Online:
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 42))

Abstract

Incorporation of substitutional carbon (≈ 1020cm−3) into the SiGe region of a heteroj unction bipolar transistor (HBT) strongly reduces boron diffusion during device processing. We describe the physical mechanism behind the suppression of B diffusion in C-rich Si and SiGe, and explain how the increased thermal stability of doping profiles in SiGe:C HBTs can be used to improve device performance. Manufacturability of SiGe:C HBTs with transit frequencies of 100 GHz and maximum oscillation frequencies of 130 GHz is demonstrated in a BiCMOS technology capable of fabricating integrated circuits for radio frequencies with high yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. L. Harame et al.: IEEE Trans. Electron Devices 48, 2575 (2001).

    Article  CAS  Google Scholar 

  2. E.J. Prinz, P.M. Garone, P.V. Schwartz, X. Xiao, J.C. Sturm: IEEE Electron Device Lett. 12, 42 (1991).

    Article  CAS  Google Scholar 

  3. L. D. Lanzerotti et al.: in Technical Digest, International Electron Device Meeting, (IEEE, Piscataway, NJ, 1996) p. 249.

    Book  Google Scholar 

  4. H. J. Osten et al.: in Technical Digest, Int. Electron Device Meeting, (IEEE, Piscataway NJ, 1997), p. 803.

    Google Scholar 

  5. B. Heinemann et al.: in Technical Digest, Int. Electron Device Meeting, (IEEE, Piscataway NJ, 2001), p. 348.

    Google Scholar 

  6. S. J. Jeng et al.: IEEE Electron Device Lett. 22, 542 (2001).

    Article  CAS  Google Scholar 

  7. H. J. Osten: Carbon-Containing layers on Silicon, Growth, Properties, and Device Application (Transtech Publications, Zürich 1999).

    Google Scholar 

  8. H. Rücker, B. Heinemann, W. Röpke, R. Kurps, D. Krüger, G. Lippert, H.J. Osten: Appl. Phys. Lett. 73, 1682 (1998).

    Article  Google Scholar 

  9. R. B. Fair: in Impurity Doping Processes in Silicon, F. F. Y. Wang (Ed.) (North-Holland, Amsterdam, The Netherlands, 1981), p. 315.

    Google Scholar 

  10. R. Scholz, U. Gösele, J.-Y. Huh, T. Y. Tan: Appl. Phys. Lett. 72, 200 (1998).

    Article  CAS  Google Scholar 

  11. R. F. Scholz, P. Werner, U. Gösele, T. Y. Tan: Appl. Phys. Lett. 74, 392 (1999).

    Article  CAS  Google Scholar 

  12. J. P. Kalejs, L. A. Ladd, U. Gösele: Appl. Phys. Lett. 45, 268 (1984).

    Article  CAS  Google Scholar 

  13. H. Bracht, N. A. Stolwijk, H. Mehrer: Phys. Rev. B 52, 16542 (1995).

    Article  CAS  Google Scholar 

  14. F. Rollert, N. A. Stolwijk, H. Mehrer: Materials Science Forum 38–41, 753 (1989).

    Article  Google Scholar 

  15. H. Rücker, B. Heinemann, R. Kurps: Phys. Rev. B 64, 073202 (2000).

    Article  CAS  Google Scholar 

  16. N. E. B. Cowern, P. C. Zalm, P. van der Sluis, D. J. Gravensteijn, W. B. de Boer: Phys. Rev. Lett. 72, 2585 (1994).

    Article  CAS  Google Scholar 

  17. H. Rücker, B. Heinemann: Solid-State Electronics 44, 783 (2000).

    Article  Google Scholar 

  18. P. A. Stolk, D. J. Eaglesham, H.-J. Gossmann, J. M. Poate: Appl. Phys. Lett. 66, 1370 (1995).

    Article  CAS  Google Scholar 

  19. H. Rücker, B. Heinemann, D. Bolze, R. Kurps, D. Krüger, G. Lippert, H. J. Osten: Appl. Phys. Lett. 74, 3377 (1999).

    Article  Google Scholar 

  20. M. D. Giles: J. Electrochem. Soc. 138, 1160 (1991).

    Article  CAS  Google Scholar 

  21. K. E. Ehwald et al.: in Technical Digest, Int. Electron Device Meeting, (IEEE, Piscataway NJ, 1999), p. 561.

    Google Scholar 

  22. D. Knoll et al.: in Technical Digest, Int. Electron Device Meeting, (IEEE, Piscataway NJ, 2001), p. 499.

    Google Scholar 

  23. B. Heinemann et al. in: Proceedings 27th Europ. Solid-State Device Research Conf., H. Grünbacher (Ed.) (Editions Frontiers, Paris, 1997), p. 544.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rücker, H., Heinemann, B., Knoll, D., Ehwald, KE. (2002). SiGe:C Heterojunction Bipolar Transistors: From Materials Research to Chip Fabrication. In: Kramer, B. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45618-X_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-45618-X_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42907-4

  • Online ISBN: 978-3-540-45618-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics