Skip to main content

Axiomatic Rewriting Theory VI: Residual Theory Revisited

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2378))

Abstract

Residual theory is the algebraic theory of confluence for the λ-calculus, and more generally conflict-free rewriting systems (=without critical pairs). The theory took its modern shape in Lévy’s PhD thesis, after Church, Rosser and Curry’s seminal steps. There, Lévy introduces a permutation equivalence between rewriting paths, and establishes that among all confluence diagrams PNQ completing a span PMQ, there exists a minimum such one, modulo permutation equivalence. Categorically, the diagram is called a pushout.

In this article, we extend Lévy’s residual theory, in order to enscope “border-line” rewriting systems, which admit critical pairs but enjoy a strong Church-Rosser property (=existence of pushouts.) Typical examples are the associativity rule and the positive braid rewriting systems. Finally, we show that the resulting theory reformulates and clarifies Lévy’s optimality theory for the λ-calculus, and its so-called “extraction procedure”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Artin. Theory of braids. Annals of Mathematics. 48(1):101–126, 1947.

    Article  MathSciNet  Google Scholar 

  2. M. Abadi, L. Cardelli, P.-L. Curien, J.-J. Lévy. “Explicit substitutions”. Journal of Functional Programming, 1(4):375–416, 1991.

    MATH  MathSciNet  Google Scholar 

  3. A. Asperti, C. Laneve. Interaction Systems I: the theory of optimal reductions. In Mathematical Structures in Computer Science, Volume 4(4), pp. 457–504, 1995.

    Article  MathSciNet  Google Scholar 

  4. H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North Holland, 1985.

    Google Scholar 

  5. J. Birman, K.H. Ko and S.J. Lee. A new approach to the word problem in the braid groups. Advances in Math. vol 139-2, pp. 322–353. 1998.

    Article  MathSciNet  Google Scholar 

  6. G. Boudol. Computational semantics of term rewriting systems. In Maurice Nivat and John C. Reynolds (eds), Algebraic methods in Semantics. Cambridge University Press, 1985.

    Google Scholar 

  7. M. Bezem, V. van Oostrom and J. W. Klop. Diagram Techniques for Confluence. Information and Computation, Volume 141, No. 2, pp. 172–204, March 15, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  8. P.-L. Curien. An abstract framework for environment machines. Theoretical Computer Science, 82(2):389–402, 31 May 1991.

    Google Scholar 

  9. H.B. Curry, R. Feys. Combinatory Logic I. North Holland, 1958.

    Google Scholar 

  10. P. Dehornoy. On completeness of word reversing. Discrete Math. 225 pp 93–119, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Dehornoy. Complete positive group presentations. Preprint. Université de Caen, 2001.

    Google Scholar 

  12. P. Dehornoy, Y. Lafont. Homology of gaussian groups. Preprint. Université de Caen, 2001.

    Google Scholar 

  13. F. A. Garside. The braid grup and other groups. Quarterly Journal of Mathematic 20:235–254, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Gramlich. Confluence without Termination via Parallel Critical Pairs. Proc. 21st Int. Coll. on Trees in Algebra and Programming (CAAP’96), ed. H. Kirchner. LNCS 1059, pp. 211–225, 1996.

    Google Scholar 

  15. G. Gonthier, J.-J. Lévy, P.-A. Melliès. An abstract standardization theorem. Proceedings of the 7th Annual IEEE Symposium on Logic In Computer Science, Santa Cruz, 1992.

    Google Scholar 

  16. J.R. Hindley. An abstract form of the Church-Rosser theorem. Journal of Symbolic Logic, vol 34, 1969.

    Google Scholar 

  17. G. Huet. Confluent reductions: abstract properties and applications to term rewriting systems. Journal of the ACM, 27(4):797–821, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Huet, J.-J. Lévy. Computations in orthogonal rewriting systems. In J.-L. Lassez and G. D. Plotkin, editors, Computational Logic; Essays in Honor of Alan Robinson, pages 394–443. MIT Press, 1991.

    Google Scholar 

  19. J.M.E. Hyland. A simple proof of the Church-Rosser theorem. Manuscript, 1973.

    Google Scholar 

  20. J.W. Klop. Combinatory Reduction Systems. Volume 127 of Mathematical Centre Tracts, CWI, Amsterdam, 1980. PhD thesis.

    Google Scholar 

  21. J.W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, T. Maibaum, eds. Handbook of Logic in Computer Science, vol. 2, pp. 2–117. Clarendon Press, Oxford, 1992.

    Google Scholar 

  22. J.W. Klop, V. van Oostrom and R. de Vrijer. Course notes on braids. University of Utrecht and CWI. Draft, 45 pages, July 1998.

    Google Scholar 

  23. J.W. Klop, V. van Oostrom and R. de Vrijer. A geometric proof of confluence by decreasing diagrams Journal of Logic and Computation, Volume 10, No. 3, pp. 437–460, June 2000

    Article  MATH  MathSciNet  Google Scholar 

  24. D. E. Knuth, P.B. Bendix. Simple word problems in universal algebras. In J. Leech (ed) Computational Problems in Abstract Algebra. Pergamon Press, Oxford, 1970. Reprinted in Automation of Reasoning 2. Springer Verlag, 1983.

    Google Scholar 

  25. J. Lamping. An algorithm for optimal lambda-calculus reductions. In proceedings of Principles of Programming Languages, 1990.

    Google Scholar 

  26. J.-J. Lévy. Réductions correctes et optimales dans le λ-calcul. Thèse de Doctorat d’Etat, Université Paris VII, 1978.

    Google Scholar 

  27. J.-J. Lévy. Optimal reductions in the lambda-calculus. In J.P. Seldin and J.R. Hindley, editors, To H.B. Curry, essays on Combinatory Logic, Lambda Calculus, and Formalisms, pp. 159–191. Academic Press, 1980.

    Google Scholar 

  28. L. Maranget. Optimal Derivations in Weak Lambda-calculi and in Orthogonal Term Rewriting Systems. Proceedings POPL’91.

    Google Scholar 

  29. S. Mac Lane. Categories for the working mathematician. Springer Verlag, 1971.

    Google Scholar 

  30. P.-A. Melliès. Description abstraite des systèmes de réécriture. Thèse de l’Université Paris VII, December 1996.

    Google Scholar 

  31. P.-A. Melliès. Axiomatic Rewriting Theory I: A diagrammatic standardization theorem. 2001. Submitted.

    Google Scholar 

  32. P.-A. Melliès. Axiomatic Rewriting Theory IV: A stability theorem in Rewriting Theory. Proceedings of the 14th Annual Symposium on Logic in Computer Science. Indianapolis, 1998.

    Google Scholar 

  33. P.-A. Melliès. Braids as a conflict-free rewriting system. Manuscript. Amsterdam, 1995.

    Google Scholar 

  34. P.-A. Melliès. Mac Lane’s coherence theorem expressed as a word problem. Manuscript. Paris, 2001.

    Google Scholar 

  35. R. Mayr, T. Nipkow. Higher-Order Rewrite Systems and their Confluence. Theoretical Computer Science, 192:3–29, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. H. A. Newman. On theories with a combinatorial definition of “equivalence”. Annals of Math. 43(2):223–243, 1942.

    Article  Google Scholar 

  37. T. Nipkow. Higher-order critical pairs. In Proceedings of Logic in Computer Science, 1991.

    Google Scholar 

  38. V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije Universiteit, Amsterdam, 1994.

    Google Scholar 

  39. V. van Oostrom. Confluence by decreasing diagrams. Theoretical Computer Science, 121:259–280, 1994.

    Article  Google Scholar 

  40. V. van Oostrom. Higher-order family. In Rewriting Techniques and Applications 96, Lecture Notes in Computer Science 1103, Springer Verlag, 1996.

    Google Scholar 

  41. V. van Oostrom. Finite family developments. In Rewriting Techniques and Applications 97, Lecture Notes in Computer Science 1232, Springer Verlag, 1997.

    Google Scholar 

  42. V. van Oostrom. Developing developments. Theoretical Computer Science, Volume 175, No. 1, pp. 159–181, March 30, 1997

    Article  MATH  MathSciNet  Google Scholar 

  43. V. van Oostrom and F. van Raamsdonk. Weak orthogonality implies confluence: the higher-order case. In Logical Foundations of Computer Science 94, Lecture Notes in Computer Science 813, Springer Verlag, 1994.

    Google Scholar 

  44. V. van Oostrom and R. de Vrijer. Equivalence of reductions, and Strategies. Chapter 8 of Term Rewriting Systems, a book by TeReSe group. To appear this summer 2002.

    Google Scholar 

  45. G.D. Plotkin, Church-Rosser categories. Unpublished manuscript. 1978.

    Google Scholar 

  46. F. van Raamsdonk. Confluence and Normalisation for Higher-Order Rewriting. PhD thesis, Vrije Universiteit van Amsterdam, 1996.

    Google Scholar 

  47. E.W. Stark. Concurrent transition systems. Theoretical Computer Science 64. May 1989.

    Google Scholar 

  48. Y. Toyama. Commutativity of term rewriting systems. In K. Fuchi and L. Kott (eds) Programming of Future Generation Computer, vol II, pp. 393–407. North-Holland, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Melliès, PA. (2002). Axiomatic Rewriting Theory VI: Residual Theory Revisited. In: Tison, S. (eds) Rewriting Techniques and Applications. RTA 2002. Lecture Notes in Computer Science, vol 2378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45610-4_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45610-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43916-5

  • Online ISBN: 978-3-540-45610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics