Skip to main content

TSP Cuts Which Do Not Conform to the Template Paradigm

  • Chapter
  • First Online:
Computational Combinatorial Optimization

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2241))

Abstract

The first computer implementation of the Dantzig-Fulkerson-Johnson cutting-plane method for solving the traveling salesman problem, written by Martin, used subtour inequalities as well as cutting planes of Gomory's type. The practice of looking for and using cuts that match prescribed templates in conjunction with Gomory cuts was continued in computer codes of Miliotis, Land, and Fleischmann. Grötschel, Padberg, and Hong advocated a different policy, where the template paradigm is the only source of cuts; furthermore, they argued for drawing the templates exclusively from the set of linear inequalities that induce facets of the TSP polytope. These policies were adopted in the work of Crowder and Padberg, in the work of Grötschel and Holland, and in the work of Padberg and Rinaldi; their computer codes produced the most impressive computational TSP successes of the nineteen eighties. Eventually, the template paradigm became the standard frame of reference for cutting planes in the TSP. The purpose of this paper is to describe a technique for .nding cuts that disdains all understanding of the TSP polytope and bashes on regardless of all prescribed templates. Combining this technique with the traditional template approach was a crucial step in our solutions of a 13,509-city TSP instance and a 15,112-city TSP instance.

Supported by ONR Grant N00014-01-1-0058

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding cuts in the TSP (A preliminary report). DIMACS Technical Report 95-05, 1995. Available at ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/1995/

  2. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling salesman problems. Documenta Mathematica Extra Volume (Proceedings of the International Congress of Mathematicians), 645–656, 1998. Also available at http://www.mathematik.uni-bielefeld.de/documenta/xvol-icm/17/17.html

  3. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde, 1999. Available at http://www.math.princeton.edu/tsp/concorde.html

  4. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Solving Traveling Salesman Problems. To appear.

    Google Scholar 

  5. Balas, E.: Facets of the knapsack polytope. Mathematical Programming 8, 146–164, 1975.

    Article  MathSciNet  Google Scholar 

  6. Batoukov, R., Sørevik, T.: A generic parallel branch and bound environment on a network of workstations. In:Proceedings of HiPer’99, pp. 474–483, 1999. Also available at http://www.ii.uib.no/~tors/publications/

  7. Bock, F.: An algorithm for solving ‘traveling-salesman’ and related network optimization problems. Research Report, Armour Research Foundation. Presented at the Operations Research Society of America Fourteenth National Meeting, St. Louis, October 24, 1958.

    Google Scholar 

  8. Boyd, E.A.: Generating Fenchel cutting planes for knapsack polyhedra. SIAM Journal of Optimization 3, 734–750, 1993.

    Article  MathSciNet  Google Scholar 

  9. Boyd, E.A.: Fenchel cutting planes for integer programs. Operations Research 42, 53–64, 1994.

    Article  MathSciNet  Google Scholar 

  10. Carr, R.: Separating clique trees and bipartition inequalities having a fixed number of handles and teeth in polynomial time. Mathematics of Operations Research 22, 257–265, 1997.

    Article  MathSciNet  Google Scholar 

  11. Christof, T., Reinelt, G.: Parallel cutting plane generation for the TSP. In: Parallel Programming and Applications (P. Fritzson and L. Finmo, eds.), IOS Press, pp. 163–169, 1995.

    Google Scholar 

  12. Christof, T., Reinelt, G.: Combinatorial optimization and small polytopes. Top 4, 1–64, 1996.

    Google Scholar 

  13. Clochard, J.-M., Naddef, D.: Using path inequalities in a branch and cut code for the symmetric traveling salesman problem. In: Third IPCO Conference, (G. Rinaldi and L. Wolsey, eds.), pp. 291–311, 1993.

    Google Scholar 

  14. Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman problem on a graph and some related integer polyhedra. Mathematical Programming 33, 1–27, 1985.

    Article  MathSciNet  Google Scholar 

  15. Craven, B.D.: Fractional Programming. Heldermann, Berlin, 1988.

    MATH  Google Scholar 

  16. Croes, G.A.: A method for solving traveling-salesman problems. Operations Research 6, 791–812, 1958.

    Article  MathSciNet  Google Scholar 

  17. Crowder, H., Johnson, E.L., Padberg, M.: Solving large-scale zero-one linear programming problems. Operations Research 31, 803–834, 1983.

    Article  Google Scholar 

  18. Crowder, H., Padberg, M.W.: Solving large-scale symmetric travelling salesman problems to optimality. Management Science 26, 495–509, 1980.

    Article  MathSciNet  Google Scholar 

  19. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling salesman problem. Operations Research 2, 393–410, 1954.

    MathSciNet  Google Scholar 

  20. Eastman, W.L.: Linear programming with pattern constraints. Ph.D. Thesis, Harvard University, 1958.

    Google Scholar 

  21. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of the National Bureau of Standards 69B, 125–130, 1965.

    Article  MathSciNet  Google Scholar 

  22. Fleischer, L.K., Tardos, É.: Separating Maximally Violated Combs in Planar Graphs. Mathematics of Operations Research 24, 130–148, 1999.

    Article  MathSciNet  Google Scholar 

  23. Fleischmann, B.: A cutting plane procedure for the travelling salesman problem on road networks. European Journal of Operational Research 21, 307–317, 1985.

    Article  MathSciNet  Google Scholar 

  24. Fleischmann, B.: A new class of cutting planes for the symmetric travelling salesman problem. Mathematical Programming 40, 225–246, 1988.

    Article  MathSciNet  Google Scholar 

  25. Ford, L.R.Jr., Fulkerson, D.R.: A suggested computation for maximal multicommodity networks flows. Management Science 5, 97–101, 1958.

    Article  MathSciNet  Google Scholar 

  26. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society 64, 275–278, 1958.

    Article  MathSciNet  Google Scholar 

  27. Gomory, R.E.: Solving linear programs in integers. In: Combinatorial Analysis (R. E. Bellman and M. Hall, Jr., eds.), Proceedings of the Symposia on Applied Mathematics X, pp. 211–216, 1960.

    Google Scholar 

  28. Gomory, R.E.: An algorithm for integer solutions to linear programs. In: Recent Advances in Mathematical Programming (R. L. Graves and P. Wolfe, eds.), McGraw-Hill, New York, pp. 269–302, 1963.

    Google Scholar 

  29. Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra and Its Applications 2, 451–558, 1969.

    Article  MathSciNet  Google Scholar 

  30. Grötschel, M.: Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme, Anton Hain Verlag, Meisenheim/Glan, 1977.

    MATH  Google Scholar 

  31. Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-city problem. Mathematical Programming Study 12, 61–77, 1980.

    Article  MathSciNet  Google Scholar 

  32. Grötschel, M., O. Holland.: Solution of large-scale symmetric travelling salesman problems. Mathematical Programming 51, 141–202, 1991.

    Article  MathSciNet  Google Scholar 

  33. Grötschel, M., Jünger, M., Reinelt, G.: A cutting plane algorithm for the linear ordering problem. Operations Research 32, 1195–1220, 1984.

    Article  MathSciNet  Google Scholar 

  34. Grötschel, M., Padberg, M.W.: On the Symmetric Travelling Salesman Problem, Report No.7536-OR, Institut für Ökonometrie und Operations Research, Universität Bonn, 1975.

    Google Scholar 

  35. Grötschel, M., Padberg, M.W.: On the symmetric travelling salesman problem I: Inequalities. Mathematical Programming 16, 265–280, 1979.

    Article  MathSciNet  Google Scholar 

  36. Grötschel, M., Padberg, M.W.: On the symmetric travelling salesman problem II: Lifting theorems and facets. Mathematical Programming 16, 281–302, 1979.

    Article  MathSciNet  Google Scholar 

  37. Grötschel, M., Pulleyblank, W.: Clique tree inequalities and the symmetric travelling salesman problem. Mathematics of Operations Research 11, 537–569, 1986.

    Article  MathSciNet  Google Scholar 

  38. Hammer, P.L., Johnson, E.L., Peled, U.N.: Facets of regular 0-1 polytopes. Mathematical Programming 8, 179–206, 1975.

    Article  MathSciNet  Google Scholar 

  39. Hong, S.: A linear programming approach for the traveling salesman problem, Ph.D. Thesis, The Johns Hopkins University, 1972.

    Google Scholar 

  40. Jewell, W.S.: Optimal flow through networks. Interim Technical Report No. 8, Massachusetts Institute of Technology, 1958.

    Google Scholar 

  41. Land, A.: The solution of some 100-city travelling salesman problems. Unpublished manuscript, 1979.

    Google Scholar 

  42. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28, 497–520, 1960.

    Article  MathSciNet  Google Scholar 

  43. Letchford, A.N.: Separating a superclass of comb inequalities in planar graphs. Mathematics of Operations Research 25, 443–454, 2000.

    Article  MathSciNet  Google Scholar 

  44. Little, J.D.C., Murty, K.G., Sweeney, D.W., Karel, C.: An algorithm for the traveling salesman problem. Operations Research 11, 972–989, 1963.

    Article  Google Scholar 

  45. Martin, G.T.: An accelerated euclidean algorithm for integer linear programming. In: Recent advances in mathematical programming (R. L. Graves and P. Wolfe, eds.), McGraw-Hill, pp. 311–318, 1963.

    Google Scholar 

  46. Martin, G.T.: Solving the traveling salesman problem by integer linear programming. Operations Research 14(Supplement 1), Abstract WA7.10, 1966.

    Google Scholar 

  47. Maurras, J.F.: Some results on the convex hull of Hamiltonian cycles of symmetric complete graphs. In: Combinatorial Programming: Methods and Applications (B. Roy, ed.), Reidel, Dordrecht, pp. 179–190, 1975.

    Google Scholar 

  48. Miliotis, P.: Integer programming approaches to the travelling salesman problem. Mathematical Programming 10, 367–378, 1976.

    Article  MathSciNet  Google Scholar 

  49. Miliotis, P.: Using cutting planes to solve the symmetric travelling salesman problem. Mathematical Programming 15, 177–188, 1978.

    Article  MathSciNet  Google Scholar 

  50. Minkowski, H.: Geometrie der Zahlen (Erste Lieferung). Teubner, Leipzig, 1896. Reprinted: Chelsea, New York, 1953.

    Google Scholar 

  51. Naddef, D.: Handles and teeth in the symmetric traveling salesman polytope. In: Polyhedral combinatorics (W. Cook and P. D. Seymour, eds.), DIMACS Series in Mathematics and Theoretical Computer Science 1, American Mathematical Society, pp. 61–74, 1990.

    Google Scholar 

  52. Naddef, D., Rinaldi, G.: The symmetric traveling salesman polytope and its graphical relaxation: Composition of valid inequalities. Mathematical Programming 51, 359–400, 1991.

    Article  MathSciNet  Google Scholar 

  53. Naddef, D., Rinaldi, G.: The graphical relaxation: A new framework for the symmetric traveling salesman polytope. Mathematical Programming 58, 53–88, 1992.

    Article  MathSciNet  Google Scholar 

  54. Naddef, D., Thienel, S.: Efficient separation routines for the symmetric traveling salesman problem I: General tools and comb separation. Working paper, 1999. Available at http://www-id.imag.fr/Laboratoire/Membres/Naddef_Denis/perso.html

  55. Naddef, D., Thienel, S.: Efficient separation routines for the symmetric traveling salesman problem II: Separating multi handle inequalities. Working paper, 1999. Available at http://www-id.imag.fr/Laboratoire/Membres/Naddef_Denis/perso.html

  56. Padberg, M.W.: On the facial structure of set packing polyhedra. Mathematical Programming 5, 199–215, 1973.

    Article  MathSciNet  Google Scholar 

  57. Padberg, M.W.: A note on zero-one programming. Operations Research 23, 833–837, 1975.

    Article  Google Scholar 

  58. Padberg, M.W., Hong, S.: On the symmetric travelling salesman problem: a computational study. Mathematical Programming Study 12, 78–107, 1980.

    Article  MathSciNet  Google Scholar 

  59. Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Mathematics of Operations Research 7, 67–80, 1982.

    Article  MathSciNet  Google Scholar 

  60. Padberg, M.W., Rinaldi, G.: Optimization of a 532-city symmetric traveling salesman problem by branch and cut. Operations Research Letters 6, 1–7, 1987.

    Article  MathSciNet  Google Scholar 

  61. Padberg, M.W., Rinaldi, G.: An efficient algorithm for the minimum capacity cut problem. Mathematical Programming 47, 1990.

    Google Scholar 

  62. Padberg, M.W., Rinaldi, G.: Facet identification for the symmetric traveling salesman polytope. Mathematical Programming 47, 219–257, 1990.

    Article  MathSciNet  Google Scholar 

  63. Padberg, M.W., Rinaldi, G.: A branch-and-cut algorithm for the resolution of largescale symmetric traveling salesman problems. SIAM Review 33, 60–100, 1991.

    Article  MathSciNet  Google Scholar 

  64. Reinelt, G.: TSPLIB-A traveling salesman problem library. ORSA Journal on Computing 3, 376–384, 1991. An updated version is available at http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/.

    Article  Google Scholar 

  65. Rossman, M.J., Twery, R.J.: A solution to the travelling salesman problem. Operations Research 6, p.687, Abstract E3.1.3, 1958.

    Google Scholar 

  66. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester, 1986.

    MATH  Google Scholar 

  67. Stancu-Minasian, I.M.: Fractional Programming. Kluwer, Dordrecht, 1997.

    Book  Google Scholar 

  68. Wolsey, L.A.: Faces for a linear inequality in 0-1 variables. Mathematical Programming 8, 165–178, 1975.

    Article  MathSciNet  Google Scholar 

  69. Wolsey, L.A.: Facets and strong valid inequalities for integer programs. Operations Research 24, 367–372, 1975.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Applegate, D., Bixby, R., Chvátal, V., Cook, W. (2001). TSP Cuts Which Do Not Conform to the Template Paradigm. In: Jünger, M., Naddef, D. (eds) Computational Combinatorial Optimization. Lecture Notes in Computer Science, vol 2241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45586-8_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45586-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42877-0

  • Online ISBN: 978-3-540-45586-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics