Skip to main content

Abstraction Methods for Game Theoretic Poker

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2063)

Abstract

Abstraction is a method often applied to keep the combinatorial explosion under control and to solve problems of large complexity. Our work focuses on applying abstraction to solve large stochastic imperfect-information games, specifically variants of poker.We examine several different medium-size poker variants and give encouraging results for abstraction-based methods on these games.

Keywords

  • poker
  • game theory
  • imperfect information games
  • Texas Hold’em

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-45579-5_22
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-45579-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. Opponent modeling in poker. In Proceedings of the 15th National Conference on Artificial Intelligence, pages 493–499, 1998.

    Google Scholar 

  2. Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

    Google Scholar 

  3. Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Efficient computation of equilibria for extensive two-person games. Games and Economic Behavior, 14(2):247–259, 1996.

    MATH  CrossRef  MathSciNet  Google Scholar 

  4. Daphne Koller and Avi Pfeffer. Representations and solutions for game-theoretic problems. Artificial Intelligence, 94(1-2):167–215, 1997.

    MATH  CrossRef  MathSciNet  Google Scholar 

  5. Avi Pfeffer, Daphne Koller, and Ken T. Takusagawa. State-space approximations for extensive form games. Workshop paper at FirstWorld Congress on Game Theory, 2000.

    Google Scholar 

  6. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, 1998.

    Google Scholar 

  7. J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ, 1947.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, J., Littman, M.L. (2001). Abstraction Methods for Game Theoretic Poker. In: Marsland, T., Frank, I. (eds) Computers and Games. CG 2000. Lecture Notes in Computer Science, vol 2063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45579-5_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-45579-5_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43080-3

  • Online ISBN: 978-3-540-45579-0

  • eBook Packages: Springer Book Archive