Skip to main content

Creating Difficult Instances of the Post Correspondence Problem

  • 771 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2063)

Abstract

Computational aspects of the Post Correspondence Problem (PCP) are studied. Specifically, we describe our efforts to find difficult instances of the PCP, where a “difficult” instance is defined to mean an instance whose shortest solution is long. As a result, we attempt to quantify the difficulty of the PCP in the same way the Busy Beaver Problem does for the Turing Halting Problem. We find instances of the PCP that have quite long solutions even when the number of pairs and the length of the strings is small, e.g., four and three, respectively. We discuss algorithms for solving the PCP and for generating difficult PCP instances. This problem poses unique difficulties because the size of the search space is unbounded.

Keywords

  • single-agent search
  • PCP
  • Post Correspondence Problem
  • hash table
  • transposition table

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-45579-5_14
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-45579-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Culberson, J.: Sokoban is PSPACE-complete. In: Int. Conf. Fun with Algorithms, Elba, June 1998

    Google Scholar 

  2. Denning, P.J., Dennis, J.B., and Qualitz, J.E.: Machines, Languages and Computation. Prentice-Hall Inc, 1978

    Google Scholar 

  3. Ehrenfeucht, A, Karhumaki, J., and Rozenberg, G.: The (generalized) post correspondence problem with lists consisting of two words is decidable. Theoret. Comput. Sci., 21, 2, 119–144, 1982

    MATH  CrossRef  MathSciNet  Google Scholar 

  4. Fraenkel, A.S., Garey, M. R., Johnson, D. S., Schfäer, T., and Yesha, Y.: The complexity of checkers on an N × N board-preliminary report. In: Proc. 19th IEEE Symp. On the Foundations of Computer Science, pp. 55–64, 1978

    Google Scholar 

  5. Gurari, E.: An Introduction to the Theory of Computation. Computer Science Press, 1989

    Google Scholar 

  6. Hopcroft, J.E., and Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley Publ., 1979

    Google Scholar 

  7. Junghanns, A. and Schaeffer, J: Sokoban: Improving the Search with Relevance Cuts. To appear in: Journal of Theoretical Computing Science, 1999

    Google Scholar 

  8. Lichtenstein, D., and Sipser, M.: Go is polynomial-space hard. J.ACM 23, pp. 710–719, 1976

    Google Scholar 

  9. Manna, Zohar: Mathematical Theory of Computation. McGraw Hill Inc, 1974

    Google Scholar 

  10. Marxen, H., and Buntrock, J.: Attacking the busy beaver. Bul. EATCS, 40, 247–251, 1990

    MATH  Google Scholar 

  11. Marxen, H, Buntrock, J, and Thompson, C: http://www.drb.insel.de/~heiner/BB/index.html

  12. Murase, Y., Matsubaara, H., and Hiraga, Y.: Automatic Making of Sokoban Problems. In: Fourth Pacific Rim International Conference in Artificial Intelligence, Cairns, Australia, Aug 26-30, 1996

    Google Scholar 

  13. Post, E.L.,: A variant of a recursively unsolvable problem. Bull. of the Am. Math. Soc., 52, 264–268, 1946

    MATH  MathSciNet  CrossRef  Google Scholar 

  14. Rado, T.: On non-computable functions. Bell Sys. Tech. J., 41, 3, 877–884, 1962

    MathSciNet  Google Scholar 

  15. Reinefeld, A, and Marsland, T.A.: Enhanced Iterative-Deepening Search. In: IEEE Trans. Pattern Anal. Machine Intell., Vol. 16, No. 7, 701–710, July, 1994

    CrossRef  Google Scholar 

  16. Taylor, L, and Korf, R.: Pruning Duplicate Nodes in Depth-First Search. In: Proc. 11th National Conf. on AI, AAAI-93, 756–761,July 11-15,1993.

    Google Scholar 

  17. Wolf, T.: Generating tsume go problems with GoTools. In: Proceedings of the Fourth International Computer Olympidade, London, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lorentz, R.J. (2001). Creating Difficult Instances of the Post Correspondence Problem. In: Marsland, T., Frank, I. (eds) Computers and Games. CG 2000. Lecture Notes in Computer Science, vol 2063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45579-5_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-45579-5_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43080-3

  • Online ISBN: 978-3-540-45579-0

  • eBook Packages: Springer Book Archive