Skip to main content

Virus Versus Mankind

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2063)

Abstract

We define a two-player virus game played on a finite cyclic digraph G=(V,E). Each vertex is either occupied by a single virus, or is unoccupied.A move consists of transplanting a virus from some u into a selected neighborhood N(u) of u, while devouring every virus in N(u), and replicating in N(u), i.e., placing a virus on all vertices of N(u) where there wasn’t any virus. The player first killing all the virus wins, and the opponent loses. If there is no last move, the outcome is a draw. Giving a minimum of the underlying theory, we exhibit the nature of the games on hand of examples. The 3-fold motivation for exploring these games stems from complexity considerations in combinatorial game theory, extending the hitherto 0-player and solitaire cellular automata games to two-player games, and the theory of linear error correcting codes.

Keywords

  • two-player cellular automata games
  • generalized Sprague-Grundy function

Humanity is but a passing episode in the eternal life of the virus

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-45579-5_13
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-45579-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. R. Berlekamp, J. H. Conway and R. K. Guy. Winning Ways for your mathematical plays. (Two volumes), Academic Press, London, 1982.

    MATH  Google Scholar 

  2. N. L. Biggs. Chip-firing and the critical group of a graph. J. Algebr. Comb. 9,25–45, 1999.

    MATH  CrossRef  MathSciNet  Google Scholar 

  3. A. Björner and L. Lovász. Chip-firing on directed graphs. J. Algebr. Comb. 1,305–328, 1992.

    MATH  CrossRef  Google Scholar 

  4. J. H. Conway. On Numbers and Games. Academic Press, London, 1976.

    MATH  Google Scholar 

  5. J. H. Conway. Integral lexicographic codes. Discrete Math. 83, 219–235, 1990.

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. J. H. Conway and N. J. A. Sloane. Lexicographic codes: error-correcting codes from game theory. IEEE Trans. Inform. Theory IT-32, 337–348, 1986.

    CrossRef  MathSciNet  Google Scholar 

  7. T. S. Ferguson. Misère annihilation games. J. Combin. Theory (Ser. A) 37, 205–230, 1984.

    MATH  CrossRef  MathSciNet  Google Scholar 

  8. A. S. Fraenkel. Combinatorial games with an annihilation rule. In The Influence of Computing on Mathematical Research and Education, Proc. Symp. Appl. Math. (J. P. LaSalle, ed.),Vol. 20, Amer. Math. Soc., Providence, RI, pp. 87–91, 1974.

    Google Scholar 

  9. A. S. Fraenkel. Error-correcting codes derived from combinatorial games. In Games of No Chance, Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ. (R. J. Nowakowski, ed.),Vol. 29, Cambridge University Press, Cambridge, pp. 417–431, 1996.

    Google Scholar 

  10. A. S. Fraenkel. Scenic trails ascending from sea-level Nim to alpine chess. In Games of No Chance, Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ. (R. J. Nowakowski, ed.), Vol. 29, Cambridge University Press, Cambridge, pp. 13–42, 1996.

    Google Scholar 

  11. A. S. Fraenkel. Two-player games on cellular automata. To appear in: More Games of No Chance, Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ. (R. J. Nowakowski, ed.), Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  12. A. S. Fraenkel and E. Goldschmidt. Pspace-hardness of some combinatorial games. J. Combin. Theory (Ser. A) 46, 21–38, 1987.

    MATH  CrossRef  MathSciNet  Google Scholar 

  13. A. S. Fraenkel and Y. Yesha. Theory of annihilation games. Bull. Amer. Math. Soc. 82, 775–777, 1976.

    MATH  MathSciNet  CrossRef  Google Scholar 

  14. A. S. Fraenkel and Y. Yesha. Complexity of problems in games, graphs and algebraic equations. Discrete Appl. Math. 1, 15–30, 1979.

    MATH  CrossRef  MathSciNet  Google Scholar 

  15. A. S. Fraenkel and Y. Yesha. Theory of annihilation games — I. J. Combin. Theory (Ser. B) 33, 60–86, 1982.

    MATH  CrossRef  MathSciNet  Google Scholar 

  16. A. S. Fraenkel and Y. Yesha. The generalized Sprague-Grundy function and its invariance under certain mappings. J. Combin. Theory (Ser. A) 43, 165–177, 1986.

    MATH  CrossRef  MathSciNet  Google Scholar 

  17. A. S. Goldstein and E. M. Reingold. The complexity of pursuit on a graph. Theoret. Comput. Sci. (Math Games) 143, 93–112, 1995.

    MATH  CrossRef  MathSciNet  Google Scholar 

  18. E. Goles. Sand piles, combinatorial games and cellular automata. Math. Appl. 64, 101–121, 1991.

    MathSciNet  Google Scholar 

  19. C. M. López. Chip firing and the Tutte polynomial. Ann. of Comb. 1, 253–259, 1997.

    MATH  CrossRef  Google Scholar 

  20. D. H. Pelletier. Merlin’s magic square. Amer. Math. Monthly 94, 143–150, 1987.

    MATH  CrossRef  MathSciNet  Google Scholar 

  21. V. Pless. Games and codes. In Combinatorial Games, Proc. Symp. Appl. Math. (R. K. Guy, ed.), Vol. 43, Amer. Math. Soc., Providence, RI, pp. 101–110, 1991.

    Google Scholar 

  22. C. A. B. Smith. Graphs and composite games. J. Combin. Theory 1, 51–81, 1966. Reprinted in slightly modified form in: A Seminar on Graph Theory (F. Harary, ed.), Holt, Rinehart and Winston, NewYork, NY, 1967.

    MATH  CrossRef  Google Scholar 

  23. D. L. Stock. Merlin’s magic square revisited. Amer. Math. Monthly 96, 608–610, 1989.

    MATH  CrossRef  MathSciNet  Google Scholar 

  24. K. Sutner. On σ-automata. Complex Systems 2, 1–28, 1988.

    MATH  MathSciNet  Google Scholar 

  25. K. Sutner. Linear cellular automata and the Garden-of-Eden. Math. Intelligencer 11, 49–53, 1989.

    MATH  MathSciNet  CrossRef  Google Scholar 

  26. K. Sutner. The σ-game and cellular automata. Amer. Math. Monthly 97, 24–34, 1990.

    MATH  CrossRef  MathSciNet  Google Scholar 

  27. K. Sutner. On the computational complexity of finite cellular automata. J. Comput. System Sci. 50, 87–97, 1995.

    MATH  CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fraenkel, A.S. (2001). Virus Versus Mankind. In: Marsland, T., Frank, I. (eds) Computers and Games. CG 2000. Lecture Notes in Computer Science, vol 2063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45579-5_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45579-5_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43080-3

  • Online ISBN: 978-3-540-45579-0

  • eBook Packages: Springer Book Archive