Two-Dimensional Ultrasonic Strain Rate Measurement of the Human Heart in Vivo

  • Jan D'hooge
  • Fadi Jamal
  • Bart Bijnens
  • Jan Thoen
  • Frans Van de Werf
  • George R. Sutherland
  • Paul Suetens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2230)


In this study, the feasibility of two-dimensional strain rate estimation of the human heart in vivo is shown. To do this, ultrasonic B-mode data were captured at a high temporal resolution of 3.7 ms and processed off-line. The motion of the radio-frequency signal patterns within the two-dimensional sector image was tracked and used as the basis for strain rate estimation. Both axial and lateral motion and strain rate estimates showed a good agreement with the results obtained by more established, one-dimensional techniques.


Radio Frequency Lateral Motion Image Line Regional Myocardial Function Axial Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Heimdal, A. Stoylen, H. Torp, and T. Skjaerpe. Real-time strain rate imaging of the left ventricle by ultrasound. Journal of the American Society of Echocardiography, 11(11):1013–1019, 1998.CrossRefGoogle Scholar
  2. 2.
    J. D'hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G.R. Sutherland. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. European Journal of Echocardiography, 1(3):154–170, 2000.CrossRefGoogle Scholar
  3. 3.
    A. Heimdal, J. D'hooge, B. Bijnens, G.R. Sutherland, and H. Torp. In vitro validation of in-plane strain rate imaging. a new ultrasound technique for evaluating regional myocardial deformation based on tissue doppler imaging. (abstract). Echocardiography, 18(8):S40, 1998.Google Scholar
  4. 4.
    S. Urheim, T. Edvardsen, H. Torp, B. Angelsen, and O. Smiseth. Myocardial strain by doppler echocardiography. validation of a new method to quantify regional myocardial function. Circulation, 102:1158–1164, 2000.Google Scholar
  5. 5.
    P.L. Castro, N.L. Greenberg, J. Drinko, M.J. Garcia, and J.D. Thomas. Potential pitfalls of strain rate imaging: angle dependency. Biomedical sciences instrumentation, 36:197–202, 2000.Google Scholar
  6. 6.
    I.A. Hein and W.D. O'Brien. Current time domain methods for assessing tissue motion by analysis from reflected ultrasound echoes-a review. IEEE Transactions on Ultrasonics, Ferro-electrics and Frequency Control, 40(2):84–102, 1993.CrossRefGoogle Scholar
  7. 7.
    L. Gao, K.J. Parker, R.M. Lerner, and S.F. Levinson. Imaging of the elastic properties of tissue-a review. Ultrasound in Medicine & Biology, 22(8):959–977, 1996.CrossRefGoogle Scholar
  8. 8.
    E.E. Konofagou and J. Ophir. A new method for estimation and imaging of lateral strains and poisson’s ratios in tissues. Ultrasound in Medicine & Biology, 24:1183–1199, 1998.CrossRefGoogle Scholar
  9. 9.
    J.G. Proakis and D.G. Manolakis. Digital signal processing: principles, algorithms and applications. Prentice-Hall International, 1996.Google Scholar
  10. 10.
    L.N. Bohs and G.E. Trahey. A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. IEEE Transactions on Biomedical Engineering, 38:280–286, 1991.CrossRefGoogle Scholar
  11. 11.
    T. Varghese, J. Ophir, and I. Cespedes. Noise reduction in elastography using temporal stretching with multicompression averaging. Ultrasound in Medicine & Biology, 22:1042–1053, 1996.Google Scholar
  12. 12.
    J.U. Voigt, M.F. Arnold, M. Karlsson, L. Hubbert, T. Kukulski, L. Hatle, and G.R. Sutherland. Assessment of regional longitudinal myocardial strain rate derived from doppler myocardial imaging indexes in normal and infarcted myocardium. The Journal of the American Society of Echocardiography, 13(6):588–598, 2000.CrossRefGoogle Scholar
  13. 13.
    M. Kowalski, T. Kukulski, F. Jamal, J. D'hooge, F. Weidemann, F. Rademakers, B. Bijnens, L. Hatle, and G.R. Sutherland. Can natural strain and strain rate quantify regional myocardial deformation? a study in healthy subjects. Ultrasound in Medicine & Biology, 27(8):1087–1097, 2001.CrossRefGoogle Scholar
  14. 14.
    F.E. Rademakers, M.B. Buchalter, W.J. Rogers, E.A. Zerhouni, J.L. Weisfeldt, M.L. Weiss, and B. Shapiro. Dissociation between left ventricular untwisting and filling. accentuation by catecholamines. Circulation, 85(4):1572–1581, 1992.Google Scholar
  15. 15.
    J.A. Vierendeels, K. Riemslagh, E. Dick, and P.R. Verdonck. Computer simulation of intraventricular flow and pressure gradients during diastole. Journal of Biomechanical Engineering, 122(6):667–674, 2000.CrossRefGoogle Scholar
  16. 16.
    J.U. Voigt, G. Lindenmeier, D. Werner, F.A. Flachskampf, U. Nixdor., L. Hatle, G.R. Sutherland, and W.G. Daniel. Strain rate imaging for the assessment of preload dependent changes in regional left ventricular diastolic longitudinal function. Journal of the American Society of Echocardiography, page (In Press), 2001.Google Scholar
  17. 17.
    C.P. Appleton and L. Hatle. The natural history of left ventricular filling abnormalities: assessment by two-dimensional and doppler echocardiography. Echocardiography, 9:437–457, 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jan D'hooge
    • 1
  • Fadi Jamal
    • 2
  • Bart Bijnens
    • 2
  • Jan Thoen
    • 3
  • Frans Van de Werf
    • 2
  • George R. Sutherland
    • 2
  • Paul Suetens
    • 1
  1. 1.Medical Image Computing, Department of Electrical EngineeringCatholic University of LeuvenLeuvenBelgium
  2. 2.Department of CardiologyCatholic University of LeuvenLeuvenBelgium
  3. 3.Laboratorium voor akoestiek en thermische fysica, Department of physicsCatholic University of LeuvenLeuvenBelgium

Personalised recommendations