Challenges in Modelling Human Heart’s Total Excitation

  • B. Milan Horáček
  • Kim Simelius
  • Rok Hren
  • Jukka Nenonen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2230)


Using a three-dimensional computer model of the human ventricular myocardium, we studied the role of ventricular architecture and conduction system in generating intramural activation patterns and the extracardiac electric field. The model represents the myocardium as an anisotropic bidomain; it incorporates detailed anatomical features, including intramural fiber rotation, the differences in the fiber arrangement of the trabeculae and papillary muscles, and a conduction system. Ectopic activation was elicited at various depths, and “normal” activation was initiated via the conduction system. Extracardiac potentials were calculated throughout each activation sequence. The simulated epicardial potential maps resembled those measured in canine hearts, featuring a central minimum accompanied by two maxima in the early stages of ectopic activation, with the axis joining these extrema approximately parallel to the fibers near the pacing site. The simulated isochrones for the “normal” activation had characteristics very similar to those observed in isolated perfused human hearts.


Conduction System Pace Site Canine Heart Endocardial Surface Intracellular Action Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berenfeld, O., Jalife, J.: Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circ. Res. 82 (1998) 1063–1077Google Scholar
  2. 2.
    Boineau, J.P., Schluessler, R.B., Eisenberg, S.B., Tweddell, J.S., Harada, A., Rokkas, C.K., Cox, J.L.: Potential distribution mapping of ventricular tachycardia. In Shenasa, M., Borggrefe, M., Breithardt, G., editors, Cardiac Mapping, pages 85–107. Futura Publishing, Mount Kisco, NY (1993)Google Scholar
  3. 3.
    Colli Franzone, P., Guerri, L., Taccardi, B.: Potential distributions generated by point stimulation in a myocardial volume. J. Cardiovasc. Electrophysiol. 4 (1993) 438–458CrossRefGoogle Scholar
  4. 4.
    Colli Franzone, P., Guerri, L., Viganotti, C., Macchi, E., Baru., S., Spaggiari, S., Taccardi, B.: Potential FIelds generated by oblique dipole layers modeling excitation wavefronts in the anisotropic myocardium. Circ. Res. 51 (1982) 330–346Google Scholar
  5. 5.
    Corbin II, L.V., Scher, A.M.: The canine heart as an electrocardiographic generator. Circ. Res. 41 (1977) 58–67Google Scholar
  6. 6.
    Demoulin, J.-C., Kulbertus, H.E.: Histopathological examination of the concept of left hemiblock. Br. Heart J. 34 (1972) 807–814CrossRefGoogle Scholar
  7. 7.
    Durrer, D., van Dam, R.Th., Freud, G.E., Janse, M.J., Meijler, F.L., Arzbaecher, R.C.: Total excitation of the isolated human heart. Circulation 41 (1970) 899–912Google Scholar
  8. 8.
    Gulrajani, R.M.: Models of the electrical activity of the heart and the computer simulation of the electrocardiogram. CRC Crit. Rev. Biomed. Eng. 16 (1988) 1–66Google Scholar
  9. 9.
    Henriquez, C.S., Muzikant, A.L., Smoak, C.K.: Anisotropy, fiber curvature and bath loading effects on activation in thin and thick cardiac tissue preparations. J. Cardiovasc. Electrophysiol. 7 (1996) 424–444CrossRefGoogle Scholar
  10. 10.
    Hoffman, B.F., Cranefield, P.F.: Electrophysiology of the heart. McGraw-Hill, New York, NY (1960)Google Scholar
  11. 11.
    Hren, R., Nenonen, J., Horáček, B.M.: Simulated epicardial potential maps during paced activation reflect myocardial fibrous structure. Ann. Biomed. Eng. 26 (1998) 1022–1035CrossRefGoogle Scholar
  12. 12.
    Hunter, P.J., Smaill, B.H., Nielsen, P.M.F., LeGrice, I.J.: A mathematical model of cardiac anatomy. In Panfilov, A.V., Holden, A.V., editors, Computational Biology of the Heart, pages 171–215. Wiley, New York (1997)Google Scholar
  13. 13.
    Khoury, D.S., Taccardi, B., Lux, R.L., Ershler, P.R., Rudy, Y.: Reconstruction of endocardial potentials and activation sequences from intracavitary probe measurements. Circulation 91 (1995) 845–863Google Scholar
  14. 14.
    Leon, L.J., Horáček, B.M.: Computer model of excitation and recovery in the anisotropic myocardium. J. Electrocardiol. 24 (1991) 1–41CrossRefGoogle Scholar
  15. 15.
    Lewis, T.: The mechanism and graphic registration of the heart beat. Shaw & Sons, London (1925) 3rd Edition.Google Scholar
  16. 16.
    Luetmer, P.H., Edwards, W.D., Seward, J.B., Tajik, J.: Incidence and distribution of left ventricular false tendons. J. Am. Coll. Cardiol. 8 (1986) 179–183CrossRefGoogle Scholar
  17. 17.
    Massing, G.K., James, T.N.: Anatomical configuration of the His bundle and bundle branches in the human heart. Circulation 53 (1976) 609–621Google Scholar
  18. 18.
    Nenonen, J., Edens, J.A., Leon, L.J., Horáček, B.M.: Computer model of propagated excitation in the anisotropic human heart. I. Implementation and algorithms. II. Simulation of extracardiac fields. In Murray, A., Arzbaecher, R., editors, Computers in Cardiology, pages 545–548 and 217-220. IEEE Computer Society Press, Los Alamitos, CA (1991)Google Scholar
  19. 19.
    Nielsen, P.M.F., LeGrice, I.J., Smaill, B.H., Hunter, P.J.: Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260 (1991) H1365-H1378Google Scholar
  20. 20.
    Panfilov, A.V.: Modelling of re-entrant patterns in an anatomical model of the heart. In Panfilov, A.V., Holden, A.V., editors, Computational Biology of the Heart, pages 259–276. Wiley, New York (1997)Google Scholar
  21. 21.
    Spach, M.S.: Anisotropy of cardiac tissue: A major determinant of conduction? J. Cardiovasc. Electrophysiol. 10 (1999) 887–890CrossRefGoogle Scholar
  22. 22.
    Spach, M.S., Miller III, W.T., Miller-Jones, E., Warren, R.B., Barr, R.C.: Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Circ. Res. 45 (1979) 188–204Google Scholar
  23. 23.
    Taccardi, B., Macchi, E., Lux, R.L., Ershler, P.E., Spaggiari, S., Baru., S., Vyhmeister, Y.: Effect of myocardial fiber direction on epicardial potentials. Circulation 90 (1994) 3076–3090Google Scholar
  24. 24.
    Tawara, S.: The conduction system of the mammalian heart. An anatomicohistological study of the atrioventricular bundle and the Purkinje fibres. Imperial College Press, London (2000)Google Scholar
  25. 25.
    Titus, J.L.: Normal anatomy of the human cardiac conduction system. Mayo Clinic Proc. 48 (1973) 24–30Google Scholar
  26. 26.
    Tranum-Jensen, J., Wilde, A.A.M., Vermeulen, J.T., Janse, M.J.: Morphology of electrophysiologically identified junctions between Purkinje fibers and ventricular muscle in rabbit and pig hearts. Circ. Res. 69 (1991) 429–437Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • B. Milan Horáček
    • 1
  • Kim Simelius
    • 2
  • Rok Hren
    • 1
  • Jukka Nenonen
    • 2
  1. 1.Dalhousie UniversityNova ScotiaCanada
  2. 2.Laboratory of Biomedical EngineeringHelsinki University of TechnologyFinland

Personalised recommendations