Advertisement

Towards Model-Based Estimation of the Cardiac Electro-Mechanical Activity from ECG Signals and Ultrasound Images

  • N. Ayache
  • D. Chapelle
  • F. Clément
  • Y. Coudière
  • H. Delingette
  • J. A. Désidéri
  • M. Sermesant
  • M. Sorine
  • J. M. Urquiza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2230)

Abstract

We present a 3D numerical representation of the heart which couples the electrical and biomechanical models. To achieve this, the FitzHugh-Nagumo equations are solved along with a constitutive law based on the Hill-Maxwell rheological law. Ultimately, the parameters of this generic model will be adjusted by comparing the actual patient’s ECG with computational results and the deformation of the biomechanical model with the geometric information extracted from the ultrasound images of the patient’s heart.

Keywords

Ultrasound Image Biomechanical Model Collaborative Research Action Potential Genesis Purkinje Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.L. Bardou, P.M. Auger, P.J. Birkui, and J.L. Chass. Modeling of cardiac electrophysiological mechanisms: From action potential genesis to its propagation in myocardium. Critical Reviews in Biomedical Engineering, 24:141–221, 1996.Google Scholar
  2. 2.
    O. Berenfeld and J. Jalife. Purkinje-muscle rentry as a mechanism of polymorphic ventricular arrhytmias in a 3-dimensional model of the ventricles. Circ. Res., 82:1063–1077, 1998.Google Scholar
  3. 3.
    J. Bestel, F. Clément, and M. Sorine. A biomechanical model of muscle contraction. InMedical Image Computing and Computer-Assisted intervention (MICCAI’01), 2001.Google Scholar
  4. 4.
    J. Bestel and M. Sorine. A differential model of muscle contraction and applications. In Schloessman Seminar on Mathematical Models in Biology, Chenistry and Physics, 2000.Google Scholar
  5. 5.
    D. Durrer, R.T. van Dam, G.E Freud, M.J. Janse, F.L. Miejler, and R.C. Arzbaecher. Total excitation of the isolated human heart. Circulation, 41:899–912, 1970.Google Scholar
  6. 6.
    A.V. Hill. The heat of shortening and the dynamic constants in muscle. Proc. Roy. Soc. London, 126:136–165, 1938.Google Scholar
  7. 7.
    A.V. Holden and A.V. Panfilov. Computational biology of the heart, chapter Modelling propagation in excitable media, pages 65–99. John Wiley & Sons, 1996.Google Scholar
  8. 8.
    Z. Knudsen, A.V. Holden, and J. Brindley. Qualitative modelling of mechano electrical feedback in a ventricular cell. Bulletin of mathematical biology, 6(59):115–181, 1997.Google Scholar
  9. 9.
    M. Nash. Mechanics and Material Properties of the Heart using an Anatomically Accurate Mathematical Model. PhD thesis, University ofAuckland, 1998.Google Scholar
  10. 10.
    A.V. Panfilov and A.V. Holden. Computer-simulation of reentry sources in myocardiumin 2 and 3 dimensions. Journal of Theoretical Biology, 3(161):271–285, 1993.CrossRefGoogle Scholar
  11. 11.
    X. Papademetris, A.J. Sinusas, D.P. Dione, and J.S. Duncan. Estimation of 3D left ventricle deformation from echocardiography. Medical Image Analysis, 5(1):17–28, 2001.CrossRefGoogle Scholar
  12. 12.
    Q.C. Pham, F. Vincent, P. Clarysse, P. Croisille, and I. Magnin. A FEM-based deformable model for the 3D segmentation and tracking of the heart in cardiac mri. In Image and Signal Processing and Analysis (ISPA’01), 2001.Google Scholar
  13. 13.
    A.E. Pollard, N. Hooke, and C.S. Henriquez. Cardiac propagation simulation. Critical Reviews in biomedical Engineering, 20(3,4):171–210, 1992.Google Scholar
  14. 14.
    J. Rogers, M. Courtemanche, and A. McCulloch. Computational biology of the heart, chapter Finite element methods for modelling impulse propagation in the heart, pages 217–233. John Wiley & Sons, 1996.Google Scholar
  15. 15.
    M. Sermesant, Y. Coudière, H. Delingette, N. Ayache, and J.A. Désidéri. An electro-mechanical model of the heart for cardiac image segmentation. In Medical Image Computing and Computer-Assisted intervention (MICCAI’01), 2001.Google Scholar
  16. 16.
    J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag (Grundlehren der mathematischen Wissenschaften 258), 1983.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • N. Ayache
    • 1
  • D. Chapelle
    • 3
  • F. Clément
    • 4
  • Y. Coudière
    • 2
  • H. Delingette
    • 1
  • J. A. Désidéri
    • 2
  • M. Sermesant
    • 1
  • M. Sorine
    • 4
  • J. M. Urquiza
    • 3
  1. 1.Épidaure Research ProjectINRIA Sophia AntipolisSophia AntipolisFrance
  2. 2.Sinus Research ProjectINRIA Sophia AntipolisFrance
  3. 3.Macs Research ProjectINRIA RocquencourtFrance
  4. 4.Sosso Research ProjectINRIA RocquencourtFrance

Personalised recommendations