Dempster Shafer Approach for High Level Data Fusion Applied to the Assessment of Myocardial Viability

  • Chantal Muller
  • Michèle Rombaut
  • Marc Janier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2230)


A modular data fusion system based on the Dempster-Shafer framework is presented. This system allows the building of any architecture off usion by chaining elementary modules. Two types ofmo dules are used, the numerical to symbolic conversion modules and the combination modules using logical rules ofcom bination. The uncertainty is modeled by a basic belief assignment or the plausibility of each hypothesis. We applied our system to assess the Left Ventricular (LV) myocardial viability. The parameters taken into account are the LV contractile function extracted from tagged Magnetic Resonance Images (MRI) and the glucose metabolism rate obtained by Positron Emission Tomography (PET) imaging. The variables ofin terest are defined by the medical experts. The results are displayed on polar maps to give a geometrical information of the potential lesions.


Myocardial Viability Medical Expert Symbolic Data Fusion System Combination Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Schafer. A mathematical theory of evidence, volume 2702. Princetown University Press, 1976.Google Scholar
  2. 2.
    A. Dempster. A generalization ofba yesian inference. Journal of the Royal Statistical Society, 30:205–247, 1968.MathSciNetGoogle Scholar
  3. 3.
    P. Smets. What is dempster-Shafer’s model? Technical Report TR/IRIDIA/Sl-20, IRIDIA-Universiti, Libre de Bruxelles, 50 Av F. Roosevelt. CP194/6. B-1050 Bruxelles, 1991.Google Scholar
  4. 4.
    Behloul F., M. Janier, P. Croisille, C. Poirier, A. Boudraa, R. Unterreiner, J.C. Mason, and D. Revel. Automatic assessment ofm yocardial viability based on pet-mri data fusion. In Proceeding of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 492–495, 1998.Google Scholar
  5. 5.
    Behloul F., M. Janier, P. Croisille, C. Poirier, A. Boudraa, R. Unterreiner, J.C. Mason, and D. Revel. Mri-pet data fusion using soft computing for the automatic assessment of myocardial viability. Computers in cardiology, 25, 1998.Google Scholar
  6. 6.
    D.L. Kraitchman, A.A. Young, D.C. Bloomgarden, Z.A. Fayad, L. Dougherty, V.A. Ferrari, R.C. Boston, and L. Axel. Integrated mri assessment ofregional function and perfusion in canine myocardial infarction. Magnetic Resonance in Medicine, 40(2):311–326, August 1998.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Chantal Muller
    • 1
  • Michèle Rombaut
    • 1
  • Marc Janier
    • 1
  1. 1.CREATIS UMR CNRS 5515VilleurbanneFrance

Personalised recommendations