Advertisement

Modules in Cardiac Modeling: Mechanics, Circulation, and Depolarization Wave

  • T. Arts
  • P. Bovendeerd
  • A. van der Toorn
  • L. Geerts
  • R. Kerckhoffs
  • F. Prinzen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2230)

Abstract

Numerical models of various aspects of cardiac function are useful in simulating pathologies and therapies. Such models cannot be easily combined because of differences in input and output structure. To harbor the different models we have developed a framework, consisting of a graph network with nodes (compliant cavities) and edges (flow ducts). Thus using a toolkit of modules facilitates tailored cardiac modeling.

Keywords

Sarcomere Length Finite Element Method Model Contractile Element Cavity Pressure Flow Duct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arts T, Bovendeerd PHM, Prinzen FW, and Reneman RS. Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall. Biophys J 59: 93–103, 1991.Google Scholar
  2. 2.
    Arts T, Veenstra PC, and Reneman RS. A model of the mechanics of the left ventricle. Ann Biomed Eng 7: 299–318, 1979.CrossRefGoogle Scholar
  3. 3.
    Bovendeerd PHM, Arts T, Delhaas T, Huyghe JM, Van Campen DH, and Reneman RS. Regional wall mechanics in the ischemic left ventricle: numerical models and dog experiments. Am J Physiol 270: H398–H410, 1996.Google Scholar
  4. 4.
    Chadwick RS. Mechanics of the left ventricle. Biophys J 39: 279–288, 1982.CrossRefGoogle Scholar
  5. 5.
    Costa KD, Hunter PJ, Wayne JS, Waldman LK, Guccione JM, and McCulloch AD. A threedimensional finite element method for large elastic deformations of ventricular myocardium: II-Prolate spheroidal coordinates. J Biomech Eng 118: 464–72., 1996.CrossRefGoogle Scholar
  6. 6.
    Franzone PC, Guerri L, Pennacchio M, and Taccardi B. Spread of excitation in 3-D models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry. Math Biosci 147: 131–71., 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Noble MIM, Milne ENC, Goerke RJ, Carlsson E, Domenach RJ, Saunders KB, and Hoffman JIE. Left ventricular filling and diastolic pressure-volume relations in the conscious dog. Circ Res 24: 269–283, 1969.Google Scholar
  8. 8.
    Sagawa K. The ventricular pressure volume diagram revisited. Circ Res 43: 677–687, 1978.Google Scholar
  9. 9.
    Suga H, and Yamakoshi KI. Effect of stroke volume and velocity of ejection on end-systolic pressure of canine left ventricle. Circ Res 40: 445–450, 1977.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • T. Arts
    • 1
    • 2
  • P. Bovendeerd
    • 2
  • A. van der Toorn
    • 1
  • L. Geerts
    • 2
  • R. Kerckhoffs
    • 1
    • 2
  • F. Prinzen
    • 3
  1. 1.Department of BiophysicsMaastricht UniversityMaastrichtThe Netherlands
  2. 2.Faculty of Biomedical EngineeringTechnological University EindhovenEindhovenThe Netherlands
  3. 3.PhysiologyMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations