Skip to main content

Approximations and Rough Sets Based on Tolerances

  • Conference paper
  • First Online:
Rough Sets and Current Trends in Computing (RSCTC 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2005))

Included in the following conference series:

Abstract

In rough set theory it is supposed that the knowledge about objects is limited by an indiscernibility relation. Commonly indiscernibility relations are assumed to be equivalences interpreted so that two objects are equivalent if we cannot distinguish them by their properties. However, there are natural indiscerni-bility relations which are not transitive, and here we assume that the knowledge about objects is restricted by a tolerance relation R. We study R-approximations, R-definable sets, R-equalities, and investigate briefly the structure of R-rough sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. A. Davey, H. A. Priestley,Introduction to Lattices and Order, Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  2. B. Ganter, R. W ille, Formal Concept Analysis. Mathematical Foundations (translated from the 1996 German original by Cornelia Franzke), Springer-Vcrlag, Berlin, 1999

    Google Scholar 

  3. M. Gehrke, E. Walker, On the Structure of Rough Sets, Bulletin of the Polish Aeadcmy of Sciences, Mathematics 40 (1992), pp 235–245.

    MATH  MathSciNet  Google Scholar 

  4. T. B. Iwiński, Algebraic Approach to Rough Sets, Bulletin of the Polish Academy of Sciences, Mathematics 35 (1987), pp 673–683.

    MathSciNet  MATH  Google Scholar 

  5. J. Järvinen, Preimage Relations and Their Matrices, in 16 pp 139–146.

    Google Scholar 

  6. J. Järvinen, Knowledge Representation and Rough Sets, Doctoral Dissertation, University of Turku, March 1999 (available at http: //www. cs.utu.fi/j jarvine/thesis.

  7. B. Konikowska, A Logic for Reasoning about Relative Similarity, Studia Logica 58 (1997), pp 185–226.

    MATH  MathSciNet  Google Scholar 

  8. S. Marcus, The Paradox of the Heap of Grains in Respect to Roughness, Fuzziness and Negligibility, in 16 pp 19–23.

    Google Scholar 

  9. J. Nieminen, Rough Tolerance Equality and Tolerance Black Boxes, Fundamenta Informaticae 11 (1988), pp 289–296.

    MATH  MathSciNet  Google Scholar 

  10. M. Novotný, Z. Pawlak, Characterization of Rough Top Equalities and Rough Bottom Equalities, Bulletin of the Polish Academy of Sciences, Mathematics 33 (1985), pp 92–97.

    Google Scholar 

  11. M. Novotný, Z. Pawlak, On Rough Equalities, Bulletin of the Polish Academy of Sciences, Mathematics 33 (1985), pp 98–113.

    Google Scholar 

  12. O. Ore, Galois Connexions, Transactions of American Mathematical Society 55 (1944), pp 493–513.

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Orlowska, Logic ofNondeterministic Information, Studia Logica XLIV (1985), pp 93–102.

    MathSciNet  Google Scholar 

  14. Z. Pawlak, Information Systems. Theoretical Foundations, Informations Systems 6 (1981), pp 205–218.

    Article  MATH  Google Scholar 

  15. Z. Pawlak, Rough Sets, International Journal of Computer and Information Sciences 5 (1982), pp 341–356.

    Article  MathSciNet  Google Scholar 

  16. L. Polkowski, A. Skowron (eds.), Rough Sets and Current Trends in Computing, Lecture Notes in Artificial Intelligence 1424, Springer-Verlag, Berlin/Heidelberg, 1998.

    MATH  Google Scholar 

  17. J. A. Pomykala, On Definability in the Nondeterministic Information System, Bulletin of the Polish Academy of Sciences, Mathematics 36 (1988), pp 193–210.

    MathSciNet  MATH  Google Scholar 

  18. J. A. Pomykala,On Similarity Based Approximation of Information, Demonstratio Math-emalica XXVII (1994), pp 663–671.

    MathSciNet  Google Scholar 

  19. A. Skowron, J. Stepaniuk, Tolerance Approximation Spaces, Fundamenta Informaticac 27 (1996), pp 245–253.

    MATH  MathSciNet  Google Scholar 

  20. M. Stetnby, Karkeat joukot ja epätäydellinen tieto (Rough Sets and Incomplete Knowledge, in Finnish). In J. Palomäki, I. Koskinen (eds.), Tiedon esittämisestä, Filosofisia tulkimuksia Tampereen yliopislosta 62, Tampere, pp 1–21, 1997.

    Google Scholar 

  21. W. Żakowski, Approximations in the Space (U, TI), Demonstratio Mathcmatica 16 (1983), pp 761–769.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Järinen, J. (2001). Approximations and Rough Sets Based on Tolerances. In: Ziarko, W., Yao, Y. (eds) Rough Sets and Current Trends in Computing. RSCTC 2000. Lecture Notes in Computer Science(), vol 2005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45554-X_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45554-X_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43074-2

  • Online ISBN: 978-3-540-45554-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics