Skip to main content

On the rotationally symmetric laminar flow of Newtonian fluids induced by rotating disks

  • Conference paper
  • First Online:
Physics of Rotating Fluids

Part of the book series: Lecture Notes in Physics ((LNP,volume 549))

Abstract

This paper deals with the flow induced by rotating disks. Such flows are subject of a large number of contributions in the twentieth century. Most of them are based on the famous von Kármán transform. In the last three decades the applicability of this transform has been proved in sophisticated experimental and theoretical investigations. The present paper focuses on theoretical investigations treating a pair of disks rotating concentrically. In addition to classical solutions given by Batchelor and Stewartson, the problem of solutions being multiple, unstable and even aphysical is briefly addressed. Furthermore, some approaches dealing with moderate Reynolds-numbers are presented for which the equations of motion are linearized starting from a known creeping flow solution. A comparison of the results with those obtained from the solution of the complete Navier-Stokes equation is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. von Kármán: ZAMM 1, 233–254 (1921)

    Article  Google Scholar 

  2. W.G. Cochran: Proc. Camb. Phil. Soc. 30, 365–375 (1934)

    Article  MATH  Google Scholar 

  3. K.G Batchelor: Q. J. Mech. Maths 4, 29–41 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  4. K. Stewartson: Proc. Camb. Phil. Soc. 49, 333–341 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  5. K.G. Picha, E.R.G. Eckert: ‘Study of the air flow between coaxial disks rotating with arbitrary velocities in an open or enclosed space’. In: Proc. Third U.S. Natl. Cong. Appl. Mech., 791–798 (1958)

    Google Scholar 

  6. S.M. Roberts, J.S. Shipman: J. Fluid Mech. 73, 53–63 (1976)

    Article  MATH  ADS  Google Scholar 

  7. G.L. Mellor, P.J. Chapple, V.J. Stokes: J. Fluid Mech. 68, 95–112 (1968)

    Article  ADS  Google Scholar 

  8. M. Holodniok, M. Kubicek, V. Hlavácek: J. Fluid Mech. 81, 689–699 (1977)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. D. Dijkstra, G.J.F. van Heijst: J. Fluid Mech. 128, 123–154 (1983)

    Article  MATH  ADS  Google Scholar 

  10. A. Delgado, H.J. Rath: Archives of Mech. 42, 4–5, 443–462 (1990)

    MATH  Google Scholar 

  11. A. Delgado: ‘Gravitationskompensierte Strömungen rotierender newtonscher und nichtnewtonscher Fluide’. In: Fortschr.-Ber. VDIR eihe 7 Nr. 264, VDI-Verlag (1995)

    Google Scholar 

  12. H.P. Greenspan: ‘The theory of rotating fluids’. In: Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  13. L. van Wijngaarden: Fluid Dynamics Transactions 12, 157–179 (1985)

    Google Scholar 

  14. P.J Zandbergen, D. Dijkstra: Annual Rev. Fluid Mech. 19, 465–491 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  15. S.V. Parter: ‘On the swirling flow between coaxial rotating disks: a survey’. In: MCR Technical Report 2332 (1982)

    Google Scholar 

  16. M.H. Rogers, G.N. Lance: J. Fluid Mech. 7, 617–631 (1960)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. U.T. Bödewadt: ZAMM 20, 241–253 (1940)

    Article  MATH  Google Scholar 

  18. R.J. Bodonyi, B.S. Ng: J. Fluid Mech. 144, 311–328 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. A. Delgado, H.J. Rath: ZAMM 69/6, T614–T616 (1989)

    Google Scholar 

  20. A. Delgado, B. Petri, H.J. Rath: Appl. Microgravity Technology 1, 4, 188–201 (1988)

    Google Scholar 

  21. J. Wu, A. Delgado, H.J. Rath: ‘Linearized numerical solution method for rotating coaxial disk flows at moderate Reynolds numbers’. In: Proc. 7th Int. Conf. Numerical Methods in Laminar and Turbulent Flows, 15–19. July1991,Stanford, CA, USA, Vol VII, 1, pp. 480–490 (1991)

    ADS  Google Scholar 

  22. J.F. Brady, L.J. Durlofsky: J. Fluid Mech. 175, 363–394 (1987)

    Article  ADS  Google Scholar 

  23. A.Z. Szeri, A. Giron, S.J. Schneider, H.N. Kaufman: J. Fluid Mech. 134, 133–154 (1983)

    Article  ADS  Google Scholar 

  24. L.J Durlofsky: Topics in fluid mechanics: I. Flow between finite rotating disks, II. Simulation of hydrodynamically interacting particles in Stokes flow. Ph.D. Thesis, Massachussets Institute of Technology (1986)

    Google Scholar 

  25. H. Schlichting: Grenzschicht-Theorie, 8nd edn. (Braun, Karlsruhe 1982)

    MATH  Google Scholar 

  26. M. Holodniok, M. Kubicek, V. Hlavácek: J. Fluid Mech. 108, 227–240 (1981)

    Article  MATH  ADS  Google Scholar 

  27. E. Reshotko, R.L. Rosenthal: Israel J. Tech. 9, 93–103 (1971)

    MATH  Google Scholar 

  28. F. Schultz-Grunow: ZAMM 14, 191–204 (1935)

    Google Scholar 

  29. R.K.-H. Szeto: The flow between rotating coaxial disks. Ph.D. Thesis, California Institute of Technology (1978)

    Google Scholar 

  30. S. Bhattacharyya, A. Pal: Acta Mechanica 135/1, 27–40 (1999)

    Article  MATH  Google Scholar 

  31. A. Delgado, H.J. Rath: ‘Theoretical investigation of the rotating disks flow of oneand two-phase fluids in microgravity’. In. Proc. IUTAM Symp. Microgravity Fluid Mech., 2.–6. September1991, Springer, Heidelberg, pp.185–193 (1992)

    Google Scholar 

  32. W.M. Yan, C.Y. Soong: International J. of Heat and Mass Transfer 40/4, 773–784 (1997)

    Article  MATH  Google Scholar 

  33. G. Leneweit, K.G. Roesner, R. Koehler: Exp. Fluids 26, 75–85 (1999)

    Article  Google Scholar 

  34. W. Hort: Zeitschrift für Technische Physik 1/10, 213–221 (1920)

    Google Scholar 

  35. P.C. Ray, B.S. Dandapat: The quarterly J. of Mech. and appl. Math. 47/1, 297–304 (1994)

    Article  MATH  Google Scholar 

  36. M. Kilic, X. Gan, J.M. Owen: J. of Fluid Mech. 281, 119–135 (1994)

    Article  ADS  Google Scholar 

  37. J.S. Roy, S. Padhy, L.K. Bhopa: Acta Mechanica 108/14, 111–120 (1995)

    Article  MATH  Google Scholar 

  38. C.Y. Soong, H.L. Ma: International J. of Heat and Mass Transfer 38, 1865–1878 (1995)

    Article  MATH  Google Scholar 

  39. C.Y. Soong, W.M. Yan: J. of Thermophysics and Heat Transfer 7/1, 165–170 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delgado, A. (2000). On the rotationally symmetric laminar flow of Newtonian fluids induced by rotating disks. In: Egbers, C., Pfister, G. (eds) Physics of Rotating Fluids. Lecture Notes in Physics, vol 549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45549-3_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-45549-3_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67514-3

  • Online ISBN: 978-3-540-45549-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics