Skip to main content

Vortical structures and velocity fluctuations of spiral and wavy vortices in the spherical Couette Flow

  • Conference paper
  • First Online:
Book cover Physics of Rotating Fluids

Part of the book series: Lecture Notes in Physics ((LNP,volume 549))

Abstract

Due to the spherical geometry and rotating effect in the spherical Couette flow(SCF) situation, understanding the dynamics of the fluid motion (vortices and waves) within such a spherical shell is relevant to both global astrophysical and geophysical processes and engineering applications. Most of previous experimental investigations on the spherical Couette flow were restricted to the cases of small and medium gap widths in which the first instability occurred as Taylor vortices at the equator (e.g., Munson & Menguturk [13]; Wimmer [22], [23]; Yavorskaya et al. [25]; Nakabayashi [14]; Bühler [4]; Bar-Yoseph et al. [2]; Egbers & Rath [6]). Some experimental and theoretical studies were also conducted recently on the case of wide gap widths in which the first instability appeared in a form of non-axisymmetric spiral waves (Egbers & Rath [6]; Araki et al. [1]; Wulf et al. [24]). When the outer sphere is held stationary, the spherical Couette flow between two spheres with the inner sphere rotating can be characterized by three control parameters. There are the Reynolds number, clearance ratio and rotative acceleration rate. Usually, the spherical Couette flow between two concentric rotating spheres shows dynamical behaviors analogous to the classical circular Couette flow between two concentric rotating cylinders in the equatorial regions, and the flow between two plane rotating disks in the polar regions, respectively. A series of our experimental work have been carried out on the spherical Couette flow between two concentric spheres for a range of the clearance ratio where the Taylor instability occurs in the equatorial region (Nakabayashi [14]; Nakabayashi & Tsuchida [15], [16]), and our previous experimental investigations on the spherical Couette flow showed a similar laminar-turbulent transition to that in the circular Couette flow(CCF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki, K., Mizushima, J. and Yanase, S.; The nonaxisymmetric instability of the wide-gap spherical Couette flow. Phys. Fluids 9(4), 1197–1199, (1997).

    Article  ADS  Google Scholar 

  2. Bar-Yoseph, P., Solan, A., Hillen, R. and Roesner, K.G.; Taylor vortex flow between eccentric coaxial rotating spheres. Phys. Fluids A2(9), 1564–1573, (1990)

    ADS  Google Scholar 

  3. Bühler, K., J. Zierep; New secondary flow instabilities for high Re-number flow between two rotating spheres. In Laminar-Turbulent Transition ed. by V. V. Kozlov (Springer) pp. 677–685, (1984).

    Google Scholar 

  4. Bühler, K.; Symmetric and asymmetric Taylor vortex flow in spherical gaps. Acta Mech. 81, 3–38, (1990).

    Article  MathSciNet  Google Scholar 

  5. Dumas, G. & Leonard, A.; A divergence-free spectral expansions method for threedimensional flows in spherical-gap geometries. J. Comput. Phys. 111, 205–219, (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Egbers, C. & Rath, H.J.; The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow. Acta Mech. 111, 125–140, (1995).

    Article  Google Scholar 

  7. Fenstermacher, P.R., H. L. Swinney, J. P. Gollub; J. Fluid Mech., 94, 103, (1979)

    Article  ADS  Google Scholar 

  8. Gorman, M., H. L. Swinney, 1982; J. Fluid Mech., 117, 123, (1982).

    Article  ADS  Google Scholar 

  9. Itoh, M.; On the stability of flow between parallel rotating conical surfaces (1st report, the case of one stationary conical surface). Trans. Japan Soc. Mech. Engrs. (Japanese), 55, 305, (1989).

    Google Scholar 

  10. Khlebutin, G.H.; Stability of fluid motion between a rotating and a stationary concentric sphere, Fluid Dynamics, 3, 31, (1968).

    Article  ADS  Google Scholar 

  11. Marcus, P. S. & Tuckerman, L. S.; Simulation of flow between concentric rotating spheres. Paper 1. Steady states. J. Fluid Mech. 185, 1–30, (1987a).

    Article  MATH  ADS  Google Scholar 

  12. Marcus, P. S. & Tuckerman, L. S.; Simulation of flow between concentric rotating spheres. Paper 2. Transition. J. Fluid Mech. 185, 31–65, (1987b).

    Article  MATH  ADS  Google Scholar 

  13. Munson, B.R. & Menguturk, M.; Viscous incompressible flow between concentric rotating spheres. Part 3: Linear stability and experiments. J. Fluid Mech. 69, 705–719, (1975).

    Article  MATH  ADS  Google Scholar 

  14. Nakabayashi, K.; Transition of Taylor-Görtler vortex flow in spherical Couette flow. J. Fluid Mech. 132, 209–230, (1983).

    Article  ADS  Google Scholar 

  15. Nakabayashi, K & Tsuchida, Y.; Spectral study of the laminar-turbulent transition in spherical Couette flow. J. Fluid Mech. 194, 101–132, (1988a).

    Article  ADS  Google Scholar 

  16. Nakabayashi, K & Tsuchida, Y.; Modulated and unmodulated traveling azimuthal waves on the toroidal vortices in a spherical Couette system. J. Fluid Mech. 195, 495–522, (1988b).

    Article  ADS  Google Scholar 

  17. Nakabayashi, K & Tsuchida, Y.; Flow-history effect on higher modes in the spherical Couette system. J. Fluid Mech. 295, 43–60, (1995).

    Article  ADS  Google Scholar 

  18. Sha, W., Nakabayashi, K. and Ueda, H.; An accurate second-order approximation factorization method for time-dependent incompressible Navier-Stokes equations in spherical polar coordinates. J. Comput. Phys. 142, 47–66, (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Sha, W. and K. Nakabayashi, 1999; On the structure, evolution processes and formation mechanism of spiral Taylor-Couette vortices in spherical Couette flow. J. Fluid Mech.; (1999) (revised).

    Google Scholar 

  20. Sawatzki, O. and J. Zierep; Das Stromfeld im Spalt zwischen zwei konzentrischen Kugelflächen, von denen die innere rotiert. Acta Mechanica, 9, 13, (1970).

    Article  Google Scholar 

  21. Swift, J., M. Gorman, H. L. Swinney; Phys. Lett. 87 A, 457, (1982).

    ADS  Google Scholar 

  22. Wimmer, M.; Experiments on a viscous fluid flow between concentric rotating spheres. J. Fluid Mech. 78, 317–335, (1976).

    Article  ADS  Google Scholar 

  23. Wimmer, M.; Experiments on the stability of viscous flow between two concentric rotating spheres. J. Fluid Mech. 103, 117–131, (1981).

    Article  ADS  Google Scholar 

  24. Wulf, P., Egbers, C., and Rath, H.J.; Routes to chaos in wide gap spherical Couette flow. Phys. Fluids 11(6), 1359–1372, (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Yavorskaya, I.M., Belyaev, Yu.N., Monakhov, A.A, Astaf'eva, N.M., Scherbakov, S.A. and Vvedenskaya, N.D.; Stability, non-uniqueness and transition to turbulence in the flow between two rotating spheres. Proc. XV IUTAM Symposium, Toronto, 431–443, (1980).

    Google Scholar 

  26. Zikanov, O. Yu.; Symmetry-breaking bifurcations in spherical Couette flow. J. Fluid Mech. 310, 293–324, (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakabayashi, K., Sha, W. (2000). Vortical structures and velocity fluctuations of spiral and wavy vortices in the spherical Couette Flow. In: Egbers, C., Pfister, G. (eds) Physics of Rotating Fluids. Lecture Notes in Physics, vol 549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45549-3_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-45549-3_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67514-3

  • Online ISBN: 978-3-540-45549-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics