Skip to main content

Spintronics: Spin Electronics and Optoelectronics in Semiconductors

  • Conference paper
  • First Online:
Interacting Electrons in Nanostructures

Part of the book series: Lecture Notes in Physics ((LNP,volume 579))

  • 564 Accesses

Abstract

Although an electron has electric charge and spin, today’s semiconductor devices are restricted to the precise control of the charge only. Taking additional advantage of the two possible electron spin orientations—spin up and spin down—might revolutionize electronics. What will be the advantages of this new technique, how far is it developed, where are the problems, and when can we buy the first spin electronic computers?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Layered Magnetic Structures: Evidence for antiferromagnetic coupling of Fe-layers across Crinterlayers, Phys. Rev. Lett. 57, 2442–2444 (1986).

    Article  Google Scholar 

  2. R. Schad, et al., Giant magnetoresistance in Fe/Cr superlattices with very thin Felayers, Appl. Phys. Lett. 64, 3500–3502 (1994).

    Article  CAS  Google Scholar 

  3. S. S. P. Parkin, et al., Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory, J. Appl. Phys. 85, 5828–5833 (1999).

    Article  CAS  Google Scholar 

  4. Gary A. Prinz, Magnetoelectronics. Science 282, 1660–1663 (1998).

    Article  CAS  Google Scholar 

  5. M. J. Snelling, et al., Magnetic g factor of electrons in GaAs/Al x Ga 1-x As quantum wells, Phys. Rev. B 44, 11345–11352 (1991); R. M. Hannak, M. Oestreich, A. P. Heberle, and W. W. Rühle Electron g Factor in Quantum Wells Determined by Spin Quantum Beats, Sol. State Comm. 93, 313–317 (1995); M. Oestreich, et al., Direct Observation of the Rotational Direction of Electron Spin recession in Semiconductors, Sol. State Comm. 108, 753–758 (1998).

    Article  CAS  Google Scholar 

  6. S. Hallstein, et al., Manifestation of Coherent Spin Precession in Stimulated Semiconductor Emission Dynamics, Phys. Rev. B 56, R7076–R7099 (1997).

    Article  CAS  Google Scholar 

  7. S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D. Awschalom, Terahertz Spin Precession and Coherent Transfer of Angular Momenta in Magnetic Quantum Wells, Phys. Rev. Lett. 77, 2814–2817 (1996).

    Article  CAS  Google Scholar 

  8. G. A. Prinz, Spin-Polarized Transport, Phys. Today 48, 58–63 (1995).

    Article  CAS  Google Scholar 

  9. S. F. Alvarado and P. Renaud, Observation of Spin-Polarized-Electron Tunneling from a Ferromagnet into GaAs, Phys. Rev. Lett. 68, 1387–1379 (1992).

    Article  CAS  Google Scholar 

  10. P. R. Hammar, B. R. Bennett, M. J. Yang, and M. Johnson, Observation of Spin Injection at a Ferromagnet-Semiconductor Interface, Phys. Rev. Lett. 83, 203–206 (1999).

    Article  CAS  Google Scholar 

  11. M. Johnson, Theory of spin-dependent transport in ferromagnet-semiconductor heterostructures, Phys. Rev. B. 58, 9635–9638 (1998).

    Article  CAS  Google Scholar 

  12. W. Y. Lee, et al., Magnetization reversal and magnetoresistance in a lateral spininjection device, J. Appl. Phys. 85, 6682–6685(1999).

    Article  CAS  Google Scholar 

  13. S. Gardelis, et al., Spin-valve e.ects in a semionductor field-effect transistor: A spintronic device, Phys. Rev. B 60, 7764–7767 (1999).

    Article  CAS  Google Scholar 

  14. S. Datta and B. Das, Electronic analog of the electro-optic modulator, Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  15. F. G. Monzon, H. X. Tang, and M.L. Roukes, Magnetoelectronic Phenomena at a Ferromagnet-Semiconductor Interface, Phys. Rev. Lett. 84, 5022 (2000).

    Article  CAS  Google Scholar 

  16. B. van Wees Comment on ”Observation on Spin Injection at a Ferromagnet-Semiconductor Interface” Phys. Rev. Lett. 84, 5023 (2000).

    Article  Google Scholar 

  17. G. Schmidt, D. Ferrand, L.W. Molenkamp, A.T. Filip, B. J. van Wees, Fundamental obstacle for electrical spin-injection from a ferromagnetic metal into a diffusive semiconductor, Phys. Rev. B 62 R4790–R4793 (2000).

    Article  CAS  Google Scholar 

  18. R. Meservey and P. M. Tedrow, Spin Polarization of Electron Tunneling from Films of Fe, Co, Ni, and Gd, Phys. Rev. B 7, 318–326 (1973); R. Meservey, D. Paraskevopoulos, P. M. Tedrow, Correlation between spin polarization of tunnel currents from 3d ferromagnets and their magnetic moments, Phys. Rev. Lett. 37, 858–860 (1976).

    Article  Google Scholar 

  19. G. Meier and T. Matsuyama, Magnetic electrodes for spin-polarized injection into InAs, Appl. Phys. Lett. 76, 1315–1317 (2000).

    Article  CAS  Google Scholar 

  20. M. Zö., et al., Magnetic films epitaxially grown on semiconductors, J. Mag. Mag. Mat. 175, 16–22 (1997).

    Article  Google Scholar 

  21. A. T. Filip, Experimental search for the electrical spin injection in a semiconductor, Phys. Rev. B 62, 9996–9999 (2000).

    Article  CAS  Google Scholar 

  22. M. Oestreich, et al., Spin injection into semiconductors, Appl. Phys. Lett. 74, 1251–1253 (1999).

    Article  CAS  Google Scholar 

  23. R. Fiederling, et al., Injection and detection of a spin-polarized current in a lightemitting diode, Nature 402, 787–790 (1999).

    Article  Google Scholar 

  24. B. T. Jonker, et al., Robust Electrical Spin Injection into a Semiconductor Heterostructure, Phys. Rev. B 62, 8180–8183 (2000).

    Article  CAS  Google Scholar 

  25. J. K. Furdyna, Diluted magnetic semiconductors, J. Appl. Phys. 64, R29–R64 (1988).

    Article  CAS  Google Scholar 

  26. Y. Ohno, et al., Electrical Spin Injection in a Ferromagnetic Semiconductor Heterostructure, Nature 402, 790–792 (1999).

    Article  CAS  Google Scholar 

  27. H. Ohno, et al., Ferromagnetic Order in (Ga,Mn)As/GaAs Heterostructures, in Proceedings 23rd International Conference on Physics of Semiconductors (World Scientific, Singapur, 1996) 405–408; H. Ohno et al., (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs, Appl. Phys. Lett. 69, 363–365(1996); H. Ohno, F. Matsukura, T. Omiya, and N. Akiba, Spin-dependent tunneling and properties of ferromagnetic (Ga,Mn)As, J. Appl. Phys. 85, 4277–4282 (1999).

    Google Scholar 

  28. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Zener Model Description of Ferromanetism in Zinc-Blende Magnetic Semiconductors, Science 287, 1019–1021 (2000).

    Article  CAS  Google Scholar 

  29. A. R. Cameron, A. R. Riblet, and A. Miller, Determination of the electron mobility in multiple quantum wells by time-resolved optical measurements, Summaries of the Papers Presented at the Topical Meeting Ultrafast Phenomena (Technical Digest Series, ISBN 1 55752 441 6) 8, 126–127 (1996); S. Adachi, T. Miyashita, S. Takeyama, Y. Takagi, and A. Tackeuchi, Exciton spin dynamics in GaAs quantum wells, J. of Luminescence 72–74, 307–308 (1997).

    Google Scholar 

  30. H. Akinaga, S. Miyanishi, K. Tanaka, W. van Roy, and K. Onodera, Magnetooptical properties and the potential application of GaAs with magnetic MnAs nanoclusters, Appl. Phys. Lett. 76, 97–99 (2000).

    Article  CAS  Google Scholar 

  31. H. X. Tang, F. G. Monzon, R. Lifshitz, M. C. Cross, and M. L. Roukes, Ballistic spin transport in a two-dimensional electron gas, Phys. Rev. B 61, 4437–4440 (2000).

    Article  CAS  Google Scholar 

  32. J. P. Lu, et al., Tunable Spin-Splitting and Spin-Resolved Ballistic Transport in GaAs/AlGaAs Two-Dimensional Holes, Phys. Rev. Lett. 81, 1282–1285(1998).

    Article  CAS  Google Scholar 

  33. G. Fasol and H. Sakaki, Spontaneous spin polarization of ballistic electrons in single-mode quantum wires due to spin splitting, Appl. Phys. Lett. 62, 2230–2232 (1993).

    Article  CAS  Google Scholar 

  34. D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, Spin transport in GaAs, Appl. Phys. Lett. 73, 1580–1582, (1998).

    Article  Google Scholar 

  35. J. M. Kikkawa and D. D. Awschalom, Lateral drag of spin coherence in gallium arsenide, Nature 397, 139–141 (1998).

    Google Scholar 

  36. T. Sogawa, H. Ando, and S. Ando, Spin-transport dynamics of optically spinpolarized electrons in GaAs quantum wires, Phys. Rev. B 61, 5535–5539 (2000).

    Article  CAS  Google Scholar 

  37. J. M. Kikkawa and D. D. Awschalom, Resonant Spin Amplification in n-Type GaAs, Phys. Rev. Lett. 80, 4313–4316 (1998).

    Article  CAS  Google Scholar 

  38. A. Tackeuchi, O. Wada, and Y. Nishikawa, Electron spin relaxation in InGaAs/InP multiple quantum wells, Appl. Phys. Lett. 70, 1131–1133 (1997).

    Article  Google Scholar 

  39. Y. Nishikawa, A. Tackeuchi, M. Ymaguchi, S. Muto, and O. Wada, Ultrafast All-Optical Spin Polarization Switch Using Quantum-Well Etalon, J. Select. Top. Quantum Electron. 2, 661–667 (1996).

    Article  CAS  Google Scholar 

  40. Aronov, A. G., Pikus, G. E., and Titkov, A. N., Spin relaxation of conduction electrons in p-type III-V compounds, Sov. Phys. JETP 57, 680–687 (1983).

    Google Scholar 

  41. S. Adachi, et al., Exciton spin dynamics in GaAs quantum wells, J. Lumin. 72, 307–308 (1997).

    Article  Google Scholar 

  42. M. I. D’yakonov, and V. I. Perel, Spin Orientation of Electrons Associated with the Interband Absorption of Light in Semiconductors, Sov. Phys. JETP 33, 1053–1059 (1971); Spin Relaxation of Conduction Electrons in Noncentrosymmetric Semiconductors, Sov. Phys. Solid State 13, 3023–3026 (1972); M. I. D’yakonov and V. Y. Kachorovskii, Spin relaxation of two-dimensional electrons in noncentrosymmetric semiconductors, Sov. Phys. Semicond. 20, 110–112 (1986).

    Google Scholar 

  43. T. Nishimura, X.-L. Wang, M. Ogura, A. Tackeuchi, and O. Wada, Electron spin relaxation in GaAs/AlGaAs quantum wires analysed by transient photoluminescence, Jap. J. Appl. Phys., Part 2:Letters 38, L941–L944.

    Google Scholar 

  44. Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Spin Relaxation in GaAs(110) Quantum Wells, Phys. Rev. Lett. 83, 4196–4199 (1999).

    Article  CAS  Google Scholar 

  45. D. Hägele, et al., Relation between spin and momentum relaxation in ZnSe/ZnMgSSe quantum wells, Physica B 272, 338–340 (1999).

    Article  Google Scholar 

  46. J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, Room Temperature Spin Memory in Two-Dimensional Electron Gases, Science 277, 1284–1287 (1997).

    Article  CAS  Google Scholar 

  47. M. Z. Maialle, E. A. de Andrada e Silva, and L. J. Sham, Exciton spin dynamics in quantum wells, Phys. Rev. B 47, 15776–15788 (1993).

    Article  CAS  Google Scholar 

  48. A. Vinattieri, et al., Electric field dependence of exciton spin relaxation in GaAs/AlGaAs quantum wells, Appl. Phys. Lett. 63, 3164–3166 (1993).

    Article  CAS  Google Scholar 

  49. N. Akiba, Interlayer exchange in (Ga,Mn)As/(Al,Ga)As/(Ga,Mn)As semiconducting ferromagnet/nonmegnet/ferromagnet trilayer structures, Appl. Phys. Lett. 73, 2122–2124 (1998).

    Article  CAS  Google Scholar 

  50. T. Jungwirth, W. A. Atkinson, B. H. Lee, and A. H. MacDonald, Interlayer coupling in ferromagnetic semiconductor superlattices, Phys. Rev. B 59, 9818–9821 (1999).

    Article  CAS  Google Scholar 

  51. A. Imamoglu, et al., Quantum Information Processing Using Quantum Dot Spins and Cavity QED, Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oestreich, M., Hübner, J., Hägele1, D. (2001). Spintronics: Spin Electronics and Optoelectronics in Semiconductors. In: Haug, R., Schoeller, H. (eds) Interacting Electrons in Nanostructures. Lecture Notes in Physics, vol 579. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45532-9_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-45532-9_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42222-8

  • Online ISBN: 978-3-540-45532-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics