Skip to main content

Microcavity Exciton Polaritons

  • Chapter
  • First Online:
Semiconductor Cavity Quantum Electrodynamics

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 169))

  • 813 Accesses

Abstract

As semiconductor fabrication technology developed, it became possible to fabricate high-Q semiconductor microcavities. Thus the study of semiconductor cavity QED started in the weak-coupling regime [49] and then entered the strong-coupling regime, where the exciton-photon coupling constant becomes larger than the exciton and cavity photon decay rates [50>]. In a high-Q semiconductor microcavity, the strong exciton-photon coupling leads to the formation of two new eigenstates of the exciton—photon coupled system, called “microcavity exciton polariton” states. The energy separation between the two polariton states increases as the exciton—photon coupling increases. This exciton—polariton normal-mode splitting is the solid-state analog of the vacuum Rabi splitting in the atom—cavity case. In the time domain, the strong exciton-photon coupling makes the spontaneous-emission process reversible; namely, the emission from the microcavity shows an oscillation, instead of the usual exponential decay. This is because photons emitted by excitons are reabsorbed and reemitted a number of times before exiting the cavity. Hence the excitation energy of the system is transferred back and forth between the QW exciton state and the cavity photon state, leading to a Rabi oscillation. This process can be modeled as a coupled pendulum system where the two pendulums correspond to the microcavity mode field at the frequency ωc and the exciton at the frequency ωex. The QW exciton state and the resonantcavity photon state form a simple system of two harmonic oscillators coupled through the light—matter interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2000). Microcavity Exciton Polaritons. In: Semiconductor Cavity Quantum Electrodynamics. Springer Tracts in Modern Physics, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45515-9_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45515-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67520-4

  • Online ISBN: 978-3-540-45515-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics