Martin Aigner, Lattice paths and determinants. In: Computational Discrete Mathematics, ed. Helmut Alt, (this volume), Lecture Notes Comput. Sci., Vol. 2122 2001, pp. 1–12.
Google Scholar
Erwin H. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian elimination. Math. Comput.
22 (1968), 565–578.
MATH
CrossRef
MathSciNet
Google Scholar
Stuart J. Berkowitz, On computing the determinant in small parallel time using a small number of processors. Inf. Process. Lett.
18 (1984), 147–150.
MATH
CrossRef
MathSciNet
Google Scholar
Allan Borodin, Joachim von zur Gathen, John Hopcroft, Fast parallel matrix and GCD computations. Inf. Control 52 (1982), 241–256
MATH
CrossRef
Google Scholar
E. Durant, Solution numérique des équations algébriques, tome II: systémes des plusieurs équations. Masson & Cie., Paris 1961.
Google Scholar
Jack Edmonds, Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Standards, Sect. B 71 (1967), 241–245.
MATH
MathSciNet
Google Scholar
Jack Edmonds, J.-F. Maurras, Note sur les Q-matrices d’Edmonds. RAIRO, Rech. opér. 31 (1997), 203–209.
MATH
MathSciNet
Google Scholar
D. K. Faddeyev, V. N. Faddeyeva, Vyčislitelńye metody lineynoy algebry (in Russian), Moscow, 1960. English translation: D. K. Faddeev, V. N. Faddeeva, Numerical Methods of Linear Algebra. Freeman, San Francisco 1963. German translation: D. K. Faddejew, W. N. Faddejewa, Numerische Methoden der linearen Algebra, several editions since 1964.
Google Scholar
G. Galbiati and Franceso Maffioli, On the computation of pfaffians. Discr. Appl. Math. 51 (1994), 269–275.
MATH
CrossRef
MathSciNet
Google Scholar
Donald E. Knuth, Overlapping Pfaffians. Electron. J. Comb. 3 (1996), No. 2, article R5, 13 pp. Printed version: J. Comb. 3 (1996), No. 2, 147-159.
Google Scholar
Christian Krattenthaler, Advanced determinant calculus. Séminaire Lotharingien de Combinatoire
B42q (1999), 67 pp.
MathSciNet
Google Scholar
László Lovász, M. D. Plummer, Matching Theory. Ann. Discr. Math., Vol. 29. North-Holland Mathematics Studies, Vol. 121. Amsterdam 1986.
Google Scholar
Meena Bhaskar Mahajan, P R Subramanya, V Vinay, A combinatorial algorithm for Pfaffians. In: Computing and combinatorics. Proc. 5th annual international conference. (COCOON’ 99), Tokyo, July 1999, ed. Takao Asano et al., Lecture Notes Comput. Sci. 1627, Springer-Verlag, pp. 134–143(1999). Extended version: DIMACS Technical Report 99-39, Rutgers University, July 1999.
Google Scholar
Meena Bhaskar Mahajan, V Vinay, Determinant: Combinatorics, algorithms, and complexity. Chicago J. Theor. Comput. Sci., Vol. 1997, Article no. 1997-5, 26 pp.
Google Scholar
Meena Mahajan, V. Vinay, Determinant: Old algorithms, new insights. SIAM J. Discrete Math. 12 (1999), 474–490.
MATH
CrossRef
MathSciNet
Google Scholar
Thomas Muir, A Treatise on the Theory of Determinants. MacMillan and Co., London 1882; repr. Dover, New York 1960.
Google Scholar
Günter Rote, Path problems in graphs. In: Computational graph theory, ed. Gottfried Tinhofer et al., Computing Suppl. 7, 155–189, Springer-Verlag, Wien1990.
Google Scholar
D. E. Rutherford, The Cayley-Hamilton theorem for semi-rings. Proc. Roy. Soc. Edinburgh, Sect. A 66(1961–64), 211–215(1964).
MathSciNet
Google Scholar
Paul A. Samuelson, A method of determining explicitly the coefficients of the characteristic equation. Ann. Math. Statist. 13 (1942), 424–429.
MATH
CrossRef
MathSciNet
Google Scholar
Dennis Stanton, Dennis White, Constructive combinatorics. Springer-Verlag, New York 1986.
MATH
Google Scholar
John R. Stembridge, Nonintersecting paths, pfaffians, and plane partitions. Adv. Math. 83 (1990), 96–113.
MATH
CrossRef
MathSciNet
Google Scholar
Volker Strassen, Vermeidung von Divisionen. J. reine angew. Math. 264 (1973), 184–202.
MATH
MathSciNet
Google Scholar
Howard Straubing, A combinatorial proof of the Cayley-Hamilton theorem. Discrete Math. 43 (1983), 273–279.
MATH
CrossRef
MathSciNet
Google Scholar
Leslie G. Valiant, Why is Boolean complexity theory difficult? In: Boolean Function Complexity, ed. M. S. Paterson, LMS Lecture Notes Series, Vol. 169, Cambridge Univ. Press, 1992, pp. 84–94.
Google Scholar
Doron Zeilberger, A combinatorial approach to matrix algebra. Discrete Math. 56 (1985), 61–72.
MATH
CrossRef
MathSciNet
Google Scholar