Skip to main content

On Identifying Simple and Quantified Lattice Points in the 2SAT Polytope

  • Conference paper
  • First Online:
Artificial Intelligence, Automated Reasoning, and Symbolic Computation (AISC 2002, Calculemus 2002)

Abstract

This paper is concerned with techniques for identifying simple and quantified lattice points in 2SAT polytopes. 2SAT polytopes generalize the polyhedra corresponding to Boolean 2SAT formulae, Vertex-Packing (Covering, Partitioning) and Network flow problems; they find wide application in the domains of Program verification (Software Engineering) and State-Space search (Artificial Intelligence). Our techniques are based on the symbolic elimination strategy called the Fourier-Motzkin elimination procedure and thus have the advantages of being extremely simple (from an implementational perspective) and incremental. We also provide a characterization of the 2SAT polytope in terms of its extreme points and derive some interesting hardness results for associated optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krzystof R. Apt and Ernst R. Olderog. Verification of Sequential and Concurrent Programs. Springer-Verlag, 1997.

    Google Scholar 

  2. Bengt Aspvall, Michael F. Plass, and Robert Tarjan. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters, (3), 1979.

    Google Scholar 

  3. Bengt Aspvall and Yossi Shiloach. A polynomial time algorithm for solving systems of linear inequalities with two variables per inequality. In 20th Annual Symposium on Foundations of Computer Science, pages 205–217, San Juan, Puerto Rico, 29–31 October 1979. IEEE.

    Google Scholar 

  4. V. Chandru and J. N. Hooker. Optimization Methods for Logical Inference. Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., 1999.

    Google Scholar 

  5. Z. Chen. A fast and efficient parallel algorithm for finding a satisfying truth assignment to a 2-cnf formula. Information Processing Letters, pages 191–193, 1992.

    Google Scholar 

  6. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press and McGraw-Hill Book Company, 6th edition, 1992.

    Google Scholar 

  7. S.A. Cook and M. Luby. A simple parallel algorithm for finding a satisfying truth assignment to a 2-cnf formula. Information Processing Letters, pages 141–145, 1988.

    Google Scholar 

  8. G. B. Dantzig and B. C. Eaves. Fourier-Motzkin Elimination and its Dual. Journal of Combinatorial Theory (A), 14:288–297, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. B. J. Fourier. Reported in: Analyse de travaux de l’Academie Royale des Sciences, pendant l’annee 1824, Partie Mathematique, Historyde l’Academie Royale de Sciences de l’Institue de France 7 (1827) xlvii-lv. (Partial English translation in: D.A. Kohler, Translation of a Report by Fourier on his work on Linear Inequalities. Opsearch 10 (1973) 38–42.). Academic Press, 1824.

    Google Scholar 

  10. F. Gavril. An efficiently solvable graph partition, problem to which many problems are reducible. Information Processing Letters, pages 285–290, 1993.

    Google Scholar 

  11. Michael Genesereth. Logical Foundations of Artificial Intelligence. Morgan Kaufmann, 1990.

    Google Scholar 

  12. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman Company, San Francisco, 1979.

    MATH  Google Scholar 

  13. Tien Huynh, Catherine Lassez, and Jean-Louis Lassez. Fourier Algorithm Revisited. In Hélène Kirchner and W. Wechler, editors, Proceedings Second International Conference on Algebraic and Logic Programming, volume 463 of Lecture Notes in Computer Science, pages 117–131, Nancy, France, October 1990. Springer-Verlag.

    Google Scholar 

  14. Dorit S. Hochbaum and Joseph (Seffi) Naor. Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM Journal on Computing, 23(6):1179–1192, December 1994.

    Google Scholar 

  15. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, 1996.

    Google Scholar 

  16. B. Korte and J. Vygen. Combinatorial Optimization. Number 21. Springer-Verlag, New York, 2000.

    MATH  Google Scholar 

  17. Jean-Louis Lassez and Michael Maher. On fourier’s algorithm for linear constraints. Journal of Automated Reasoning, to appear, 1991.

    Google Scholar 

  18. Jacques Loeckx and Kurt Sieber. The Foundations of Program Verification. John Wiley and Sons, 1985.

    Google Scholar 

  19. Nils J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, 1998.

    Google Scholar 

  20. G. L. Nemhauser and L. E. Trotter Jr. Properties of vertex packing and independence system polyhedra. mathprog, 6:48–61, 1974.

    MATH  MathSciNet  Google Scholar 

  21. G. L. Nemhauser and J. L. E. Trotter. Vertex packing: structural properties and algorithms. Mathematical Programming, 8:232–248, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons, New York, 1999.

    MATH  Google Scholar 

  23. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, New York, 1994.

    MATH  Google Scholar 

  24. T.J. Schaefer. The complexity of satisfiability problems. In Alfred Aho, editor, Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pages 216–226, New York City, NY, 1978. ACM Press.

    Google Scholar 

  25. Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, New York, 1987.

    Google Scholar 

  26. Robert Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM, 28(4):769–779, October 1981.

    Google Scholar 

  27. K. Subramani. An analysis os selected qips, 2002. Submitted to Journal of Logic and Computation.

    Google Scholar 

  28. K. Subramani. A polynomial time algorithm for a class of quantified linear programs, 2002. Submitted to Mathematical Programming.

    Google Scholar 

  29. A.F. Veinott and G.B. Dantzig. Integral extreme points. SIAM Review, 10:371–372, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  30. V. Chandru and M.R. Rao. Linear programming. In Algorithms and Theory of Computation Handbook, CRC Press, 1999. CRC Press, 1999.

    Google Scholar 

  31. H.P. Williams. Fourier-motzkin elimination extension to integer programming. J. Combinatorial Theory, (21):118–123, 1976.

    Google Scholar 

  32. H.P. Williams. A characterisation of all feasible solutions to an integer program. Discrete Appl. Math., (5):147–155, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Subramani, K. (2002). On Identifying Simple and Quantified Lattice Points in the 2SAT Polytope. In: Calmet, J., Benhamou, B., Caprotti, O., Henocque, L., Sorge, V. (eds) Artificial Intelligence, Automated Reasoning, and Symbolic Computation. AISC Calculemus 2002 2002. Lecture Notes in Computer Science(), vol 2385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45470-5_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45470-5_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43865-6

  • Online ISBN: 978-3-540-45470-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics