Abstract
In contrast to the classical setting of sequences, no temporal logic has yet been identified over Mazurkiewicz traces that is equivalent to first-order logic over traces and yet admits an elementary decision procedure. In this paper, we describe a local temporal logic over traces that is expressively complete and whose satisfiability problem is in Pspace. Contrary to the situation for sequences, past modalities are essential for such a logic. A somewhat unexpected corollary is that first-order logic with three variables is expressively complete for traces.
Work done while the second author was visiting LIAFA, Université Paris 7. Partial support of CEFIPRA-IFCPAR Project 2102-1 (ACSMV) is gratefully acknowledged.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Alur, D. Peled, and W. Penczek. Model-checking of causality properties. In Proceedings of LICS’95, pages 90–100, 1995.
C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms for the verification of temporal properties. Formal Methods in System Design, 1:275–288, 1992.
V. Diekert and P. Gastin. LTL is expressively complete for Mazurkiewicz traces. In Proceedings ofICALP 2000, number 1853 in LNCS, pages 211–222. Springer Verlag, 2000.
V. Diekert and P. Gastin. Local temporal logic is expressively complete for cograph dependence alphabets. In Proceedings of LPAR’01, number 2250 in LNAI, pages 55–69. Springer Verlag, 2001.
V. Diekert and P. Gastin. LTL is expressively complete for Mazurkiewicz traces. Journal of Computer and System Sciences, 2002. To appear.
V. Diekert and G. Rozenberg, editors.The Book of Traces. World Scientific, Singapore, 1995.
W. Ebinger and A. Muscholl. Logical definability on infinite traces. Theoretical Computer Science, 154:67–84, 1996.
W. Ebinger. Charakterisierung von Sprachklassen unendlicher Spuren durch Logiken. Dissertation, Institut für Informatik, Universität Stuttgart, 1994.
D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Proceedings of PoPL’80, pages 163–173, Las Vegas, Nev., 1980.
T. Jiang and B. Ravikumar. A note on the space complexity of some decision problems for finite automata. Information Processing Letters, 40:25–31, 1991.
J.A.W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, California, 1968.
A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.
P. Niebert. A ν-calculus with local views for sequential agents. In Proceedings of MFCS’95, number 969 in LNCS, pages 563–573. Springer Verlag, 1995.
D. Perrin and J.-E. Pin. Infinite words. Technical report, LITP, Avril 1997.
A. Pnueli. The temporal logics of programs. In Proceedings of the 18th IEEE FOCS, 1977, pages 46–57, 1977.
R. Ramanujam. Locally linear time temporal logic. In Proceedings of LICS’96, pages 118–128, 1996.
P.S. Thiagarajan and I. Walukiewicz. An expressively complete linear time temporal logic for Mazurkiewicz traces. In Proceedings of LICS’97, pages 183–194, 1997.
P.S. Thiagarajan. A trace based extension of linear time temporal logic. In Proceedings of LICS’94, pages 438–447, 1994.
M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Proceedings of LICS’86, pages 322–331, 1986.
M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Concurrency: Structure versus Automata, number 1043 in LNCS, pages 238–266. Springer Verlag, 1996.
I. Walukiewicz. Difficult configurations — on the complexity of LTrL. In Proceedings ofICALP’98, number 1443 in LNCS, pages 140–151. Springer Verlag, 1998.
I. Walukiewicz. Private communication, 2001.
I. Walukiewicz. Local logics for traces. Journal of Automata, Languages and Combinatorics, 2002. To appear.
Th. Wilke. Classifying discrete temporal properties. Habilitationsschrift (postdoctoral thesis), April 1998.
Th. Wilke. Classifying discrete temporal properties. In Proceedings of STACS’99, number 1563 in LNCS, pages 32–46. Springer Verlag, 1999.
W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Informatique Théorique et Applications, 21:99–135, 1987.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gastin, P., Mukund, M. (2002). An Elementary Expressively Complete Temporal Logic for Mazurkiewicz Traces. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_80
Download citation
DOI: https://doi.org/10.1007/3-540-45465-9_80
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43864-9
Online ISBN: 978-3-540-45465-6
eBook Packages: Springer Book Archive