Skip to main content

An Elementary Expressively Complete Temporal Logic for Mazurkiewicz Traces

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2380))

Included in the following conference series:

Abstract

In contrast to the classical setting of sequences, no temporal logic has yet been identified over Mazurkiewicz traces that is equivalent to first-order logic over traces and yet admits an elementary decision procedure. In this paper, we describe a local temporal logic over traces that is expressively complete and whose satisfiability problem is in Pspace. Contrary to the situation for sequences, past modalities are essential for such a logic. A somewhat unexpected corollary is that first-order logic with three variables is expressively complete for traces.

Work done while the second author was visiting LIAFA, Université Paris 7. Partial support of CEFIPRA-IFCPAR Project 2102-1 (ACSMV) is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Alur, D. Peled, and W. Penczek. Model-checking of causality properties. In Proceedings of LICS’95, pages 90–100, 1995.

    Google Scholar 

  2. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms for the verification of temporal properties. Formal Methods in System Design, 1:275–288, 1992.

    Article  Google Scholar 

  3. V. Diekert and P. Gastin. LTL is expressively complete for Mazurkiewicz traces. In Proceedings ofICALP 2000, number 1853 in LNCS, pages 211–222. Springer Verlag, 2000.

    Google Scholar 

  4. V. Diekert and P. Gastin. Local temporal logic is expressively complete for cograph dependence alphabets. In Proceedings of LPAR’01, number 2250 in LNAI, pages 55–69. Springer Verlag, 2001.

    Google Scholar 

  5. V. Diekert and P. Gastin. LTL is expressively complete for Mazurkiewicz traces. Journal of Computer and System Sciences, 2002. To appear.

    Google Scholar 

  6. V. Diekert and G. Rozenberg, editors.The Book of Traces. World Scientific, Singapore, 1995.

    Google Scholar 

  7. W. Ebinger and A. Muscholl. Logical definability on infinite traces. Theoretical Computer Science, 154:67–84, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Ebinger. Charakterisierung von Sprachklassen unendlicher Spuren durch Logiken. Dissertation, Institut für Informatik, Universität Stuttgart, 1994.

    Google Scholar 

  9. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Proceedings of PoPL’80, pages 163–173, Las Vegas, Nev., 1980.

    Google Scholar 

  10. T. Jiang and B. Ravikumar. A note on the space complexity of some decision problems for finite automata. Information Processing Letters, 40:25–31, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.A.W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, California, 1968.

    Google Scholar 

  12. A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

    Google Scholar 

  13. P. Niebert. A ν-calculus with local views for sequential agents. In Proceedings of MFCS’95, number 969 in LNCS, pages 563–573. Springer Verlag, 1995.

    Google Scholar 

  14. D. Perrin and J.-E. Pin. Infinite words. Technical report, LITP, Avril 1997.

    Google Scholar 

  15. A. Pnueli. The temporal logics of programs. In Proceedings of the 18th IEEE FOCS, 1977, pages 46–57, 1977.

    Google Scholar 

  16. R. Ramanujam. Locally linear time temporal logic. In Proceedings of LICS’96, pages 118–128, 1996.

    Google Scholar 

  17. P.S. Thiagarajan and I. Walukiewicz. An expressively complete linear time temporal logic for Mazurkiewicz traces. In Proceedings of LICS’97, pages 183–194, 1997.

    Google Scholar 

  18. P.S. Thiagarajan. A trace based extension of linear time temporal logic. In Proceedings of LICS’94, pages 438–447, 1994.

    Google Scholar 

  19. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Proceedings of LICS’86, pages 322–331, 1986.

    Google Scholar 

  20. M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Concurrency: Structure versus Automata, number 1043 in LNCS, pages 238–266. Springer Verlag, 1996.

    Google Scholar 

  21. I. Walukiewicz. Difficult configurations — on the complexity of LTrL. In Proceedings ofICALP’98, number 1443 in LNCS, pages 140–151. Springer Verlag, 1998.

    Google Scholar 

  22. I. Walukiewicz. Private communication, 2001.

    Google Scholar 

  23. I. Walukiewicz. Local logics for traces. Journal of Automata, Languages and Combinatorics, 2002. To appear.

    Google Scholar 

  24. Th. Wilke. Classifying discrete temporal properties. Habilitationsschrift (postdoctoral thesis), April 1998.

    Google Scholar 

  25. Th. Wilke. Classifying discrete temporal properties. In Proceedings of STACS’99, number 1563 in LNCS, pages 32–46. Springer Verlag, 1999.

    Google Scholar 

  26. W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Informatique Théorique et Applications, 21:99–135, 1987.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gastin, P., Mukund, M. (2002). An Elementary Expressively Complete Temporal Logic for Mazurkiewicz Traces. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_80

Download citation

  • DOI: https://doi.org/10.1007/3-540-45465-9_80

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43864-9

  • Online ISBN: 978-3-540-45465-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics