Skip to main content

Deciding DPDA Equivalence Is Primitive Recursive

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2380)

Abstract

Recently Sénizergues showed decidability of the equivalence problem for deterministic pushown automata. The proof of decidability is two semi-decision procedures that do not give a complexity upper bound for the problem. Here we show that there is a simpler deterministic decision procedure that has a primitive recursive upper bound.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-45465-9_70
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-45465-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ginsberg, S., and Greibach, S. (1966). Deterministic context-free languages. Information and Control, 620–648.

    Google Scholar 

  2. Harrison, M. (1978). Introduction to Formal Language Theory, Addison-Wesley.

    Google Scholar 

  3. Harrison, M., and Havel, I. (1973). Strict deterministic grammars. Journal of Computer and System Sciences, 7, 237–277.

    MATH  MathSciNet  Google Scholar 

  4. Harrison, M., Havel, I., and Yehudai, A. (1979). On equivalence of grammars through transformation trees. Theoretical Computer Science, 9, 173–205.

    MATH  CrossRef  MathSciNet  Google Scholar 

  5. Korenjak, A and Hopcroft, J. (1966). Simple deterministic languages. Procs. 7th Annual IEEE Symposium on Switching and Automata Theory, 36–46.

    Google Scholar 

  6. Sénizergues, G. (1997). The equivalence problem for deterministic pushdown automata is decidable. Lecture Notes in Computer Science, 1256, 671–681.

    Google Scholar 

  7. Sénizergues, G. (2001). L(A) = L(B)? decidability results from complete formal systems. Theoretical Computer Science, 251, 1–166.

    MATH  CrossRef  MathSciNet  Google Scholar 

  8. Sénizergues, G. (2001). L(A) = L(B)? a simplified decidability proof. pp. 1–58. To appear in Theoretical Computer Science.

    Google Scholar 

  9. Stirling, C. (2001). Decidability of DPDA equivalence. Theoretical Computer Science, 255, 1–31.

    MATH  CrossRef  MathSciNet  Google Scholar 

  10. Stirling, C. (2001). An introduction to decidability of DPDA equivalence. Lecture Notes in Computer Science, 2245, 42–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stirling, C. (2002). Deciding DPDA Equivalence Is Primitive Recursive. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_70

Download citation

  • DOI: https://doi.org/10.1007/3-540-45465-9_70

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43864-9

  • Online ISBN: 978-3-540-45465-6

  • eBook Packages: Springer Book Archive