Skip to main content

Exponential Lower Bound for Static Semi-algebraic Proofs

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2380))

Included in the following conference series:

Abstract

Semi-algebraic proof systems were introduced in [1] as extensions of Lovász-Schrijver proof systems [2,3]. These systems are very strong; in particular, they have short proofs of Tseitin’s tautologies, the pigeonhole principle, the symmetric knapsack problem and the clique-coloring tautologies [1].

In this paper we study static versions of these systems. We prove an exponential lower bound on the length of proofs in one such system. The same bound for two tree-like (dynamic) systems follows. The proof is based on a lower bound on the “Boolean degree” of Positivstellensatz Calculus refutations of the symmetric knapsack problem.

Partially supported by grant of RAS contest-expertise of young scientists projects and grants from CRDF (RM1-2409-ST-02), RFBR (02-01-00089), and NATO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semi-algebraic proofs. In: Proceedings of the 19th International Symposium on Theoretical Aspects of Computer Science, STACS 2002. Volume 2285 of Lecture Notes in Computer Science., Springer (2002) 419–430

    Google Scholar 

  2. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optimization 1 (1991) 166–190

    Article  MATH  MathSciNet  Google Scholar 

  3. Lovász, L.: Stable sets and polynomials. Discrete Mathematics 124 (1994) 137–153

    Article  MATH  MathSciNet  Google Scholar 

  4. Beame, P., Impagliazzo, R., Krajíček, J., Pitassi, T., Pudlák, P.: Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Math. Soc. 73 (1996) 1–26

    Article  MATH  MathSciNet  Google Scholar 

  5. Beame, P., Impagliazzo, R., Krajíček, J., Pudlák, P., Razborov, A.A., Sgall, J.: Proof complexity in algebraic systems and bounded depth Frege systems with modular counting. Computational Complexity 6 (1996/97) 256–298

    Google Scholar 

  6. Razborov, A.A.: Lower bounds for the polynomial calculus. Computational Complexity 7 (1998) 291–324

    Article  MATH  MathSciNet  Google Scholar 

  7. Impagliazzo, R., Pudlák, P., Sgall, J.: Lower bounds for the polynomial calculus. Computational Complexity 8 (1999) 127–144

    Article  MATH  MathSciNet  Google Scholar 

  8. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC’96, ACM (1996) 174–183

    Google Scholar 

  9. Buss, S., Grigoriev, D., Impagliazzo, R., Pitassi, T.: Linear gaps between degrees for the polynomial calculus modulo distinct primes. Journal of Computer and System Sciences 62 (2001) 267–289

    Article  MATH  MathSciNet  Google Scholar 

  10. Grigoriev, D., Hirsch, E.A.: Algebraic proof systems over formulas. Technical Report 01-011, Electronic Colloquim on Computational Complexity (2001) ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/2001/TR01-011/index.html.

  11. Pudlák, P.: On the complexity of propositional calculus. In: Sets and Proofs: Invited papers from Logic Colloquium’97. Cambridge University Press (1999) 197–218

    Google Scholar 

  12. Stephen, T., Tunçel, L.: On a representation of the matching polytope via semidef-inite liftings. Math. Oper. Res. 24 (1999) 1–7

    Article  MATH  MathSciNet  Google Scholar 

  13. Cook, W., Dash, S.: On the matrix-cut rank of polyhedra. Math. Oper. Res. 26 (2001) 19–30

    Article  MATH  MathSciNet  Google Scholar 

  14. Dash, S.: On the Matrix Cuts of Lovász and Schrijver and their use in Integer Programming. Technical report tr01-08, Rice University (2001) http://www.caam.rice.edu/caam/trs/2001/TR01-08.ps.

  15. Goemans, M.X., Tunçel, L.: When does the positive semidefiniteness constraint help in lifting procedures. Mathematics of Operations Research (2001) to appear.

    Google Scholar 

  16. Gomory, R.E.: An algorithm for integer solutions of linear programs. In: Recent Advances in Mathematical Programming. McGraw-Hill (1963) 269–302

    Google Scholar 

  17. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4 (1973) 305–337

    Article  MATH  MathSciNet  Google Scholar 

  18. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs. Discrete Appl. Math. 18 (1987) 25–38

    Article  MATH  MathSciNet  Google Scholar 

  19. Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Linear Algebra Appl. 114/115 (1989) 455–499

    Article  Google Scholar 

  20. Lombardi, H., Mnev, N., Roy, M.F.: The Positivstellensatz and small deduction rules for systems of inequalities. Mathematische Nachrichten 181 (1996) 245–259

    Article  MATH  MathSciNet  Google Scholar 

  21. Grigoriev, D., Vorobjov, N.: Complexity of Null-and Positivstellensatz proofs. Annals of Pure and Applied Logic 113 (2001) 153–160

    Article  MathSciNet  Google Scholar 

  22. Grigoriev, D.: Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity. Theoretical Computer Science 259 (2001) 613–622

    Article  MATH  MathSciNet  Google Scholar 

  23. Grigoriev, D.: Complexity of Positivstellensatz proofs for the knapsack. Computational Complexity 10 (2001) 139–154

    Article  MATH  MathSciNet  Google Scholar 

  24. Cook, S.A., Reckhow, A.R.: The relative efficiency of propositional proof systems. Journal of Symbolic Logic 44 (1979) 36–50

    Article  MATH  MathSciNet  Google Scholar 

  25. Pitassi, T.: Algebraic propositional proof systems. In Immerman, N., Kolaitis, P.G., eds.: Descriptive Complexity and Finite Models. Volume 31 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society (1997)

    Google Scholar 

  26. Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semi-algebraic proofs. Technical Report 01-103, Revision 01, Electronic Colloquim on Computational Complexity (2002) ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/2001/TR01-103/index. html#R01

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grigoriev, D., Hirsch, E.A., Pasechnik, D.V. (2002). Exponential Lower Bound for Static Semi-algebraic Proofs. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-45465-9_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43864-9

  • Online ISBN: 978-3-540-45465-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics