Skip to main content

From Symbolic Dynamics to a Digital Approach: Chaos and Transcendence

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 550))

Abstract

We review recent progress on Feigenbaum attractors and their interconnection with Number Theory. We further enlight the relation between Chaos and Transcendence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nicolis G., (1995) Introduction to Nonlinear Science. Cambridge University Press, Cambridge

    Google Scholar 

  2. Bai-Lin H., (1994) Chaos. World Scientific, Singapore

    Google Scholar 

  3. Schuster H.G., (1984) Deterministic Chaos. Physik-Verlag

    Google Scholar 

  4. Schröder M., (1991) Fractals, Chaos, Power Laws. Freeman, New York

    MATH  Google Scholar 

  5. Nicolis G. and Gaspard P., (1994) Toward a Probabilistic approach to Complex Systems. Chaos, Solitons & Fractals 4, No. 1, 41–57

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Khinchin A.I., (1957) Mathematical Foundations of Information Theory. Dover, New York

    MATH  Google Scholar 

  7. Kemeny J. and Snell L., (1976) Finite Markov Chains. Springer-Verlag, Berlin

    MATH  Google Scholar 

  8. Thom R., (1983) Paraboles et Catastrophes. Flammarion, Paris

    MATH  Google Scholar 

  9. Nicolis J.S., (1991) Chaos and Information Processing. World Scientific, Singapore

    Google Scholar 

  10. Eckmann J.P. and Ruelle D., (1985) Ergodic Theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617

    Article  ADS  MathSciNet  Google Scholar 

  11. Milnor J. and Thurston W., (1986) On iterated maps of the interval, in 1342 Dynamical Systems, Proceedings, University of Maryland, J.C. Alexander (Ed.), 465–563, Lecture Notes in Mathematics, Springer-Verlag; and references therein

    Google Scholar 

  12. Julia G., (1918) Mémoire sur l’itération des fonctions rationelles. J. de Math. (Liouville) Ser. 7, 4, 47–245. The relevant theorem appears on p. 129.

    Google Scholar 

  13. Fatou M.P., (1919) Sur les èquations fonctionnelles. Bull. Soc. Math. France 47, 161–271; (1920) 48, 33-94, 208-314

    MathSciNet  Google Scholar 

  14. Metropolis N., Stein M.L. and Stein P.R., (1973) On Finite Limit Sets for Transformations on the Unit Interval. Journal of Combinatorial Theory, Vol. A 15, No. 1, 25–44

    MathSciNet  Google Scholar 

  15. Derrida B., Gervois A. and Pomeau Y., (1978) Iteration of endomorphisms on the real axis and representation of numbers. Ann. Inst. Henri Poincaré, Section A: Physique Théorique, Vol. XXIX, n0 3, 305–356

    MathSciNet  Google Scholar 

  16. Karamanos K. and Nicolis G., (1999) Symbolic Dynamics and Entropy Analysis of Feigenbaum Limit Sets. Chaos, Solitons & Fractals, 10, No 7, 1135–1150

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Feigenbaum M., (1978) Quantitative Universality for a Class of Nonlinear Transformations. J. Stat. Phys. 19, 25

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Feigenbaum M., (1979) The Universal Metric Properties of Nonlinear Transformations. J. Stat. Phys. 21, 669

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Grassberger P., (1981) On the Hausdor. Dimension of Fractal Attractors. J. Stat. Phys. 26, No. 1, 173

    Article  ADS  MathSciNet  Google Scholar 

  20. Fraser S. and Kapral R., (1985) Mass and dimension of Feigenbaum attractors. Phys. Rev. A31, 3, 1687

    ADS  MathSciNet  Google Scholar 

  21. Christol G., Kamae T., Mendes-France M. and Rauzy G., (1980) Suites algébriques, automates et substitutions. Bull. Soc. Math. France 108, 401–419

    MATH  MathSciNet  Google Scholar 

  22. Allouche J.-P. and Cosnard M., (1983) Itérations de fonctions unimodales et suites engendrées par automates. C. R. Acad. Sc. Paris (Série I), 296, 159–162

    MATH  MathSciNet  Google Scholar 

  23. Grassberger P., (1986) Toward a Quantitative Theory of Self-Generated Complexity. Int. J. Theor. Phys. 25, No. 9, 907

    Article  MATH  MathSciNet  Google Scholar 

  24. Ebeling W. and Nicolis G., (1991) Entropy of Symbolic Sequences: the Role of Correlations. Europhys. Lett. 14 (3), 191–196

    Article  ADS  Google Scholar 

  25. Ebeling W. and Nicolis G., (1992) Word Frequency and Entropy of Symbolic Sequences: a Dynamical Perspective. Chaos, Solitons & Fractals 2, 635

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Freund J., Ebeling W. and Rateitschak K., (1996) Self-similar sequences and universal scaling of dynamical entropies. Phys. Rev. E54, 5, 5561–5566

    ADS  Google Scholar 

  27. Rateitschak K., Freund J. and Ebeling W., (1996) Entropy of sequences Generated by Nonlinear Processes: The Logistic Map, in Entropy and Entropy Generation. Shiner J.S. (Ed.), Kluwer Acad. Publ., 11–26

    Google Scholar 

  28. Freund J. and Rateitschak K., (1998) Entropy Analysis of Noise Contaminated Sequences. Int. J. Bif. Chaos 8(5), 933

    Article  MATH  Google Scholar 

  29. Mandelbrot B.B., (1982) The Fractal Geometry of Nature. Freeman, San Franscisco

    MATH  Google Scholar 

  30. Balakrishnan V., Nicolis G. and Nicolis C., (1997) Recurrence Time Statistics in Chaotic Dynamics. I. Discrete time Maps. J. Stat. Phys., 86, 191

    MATH  ADS  MathSciNet  Google Scholar 

  31. Karamanos K., (1999) On the connection between 1D Chaotic Dynamics and Number Theory. From Symbolic Dynamics to a Digital Approach. Submitted for publication to Nonlinearity

    Google Scholar 

  32. Karamanos K., unpublished (1998). In fact the pure m sequences turn out to be self-similar under the repeated use of the replacements (21) and (22) of [16]. This means that Ln((Pm *)∞) = (Pm *) for any finite n, where L is the operator defined in Sec 4 of [16] and * is the composition rule defined in [15]. This can be shown by a method similar to that used in [16]

    Google Scholar 

  33. Chaitin G.J., (1994) Randomness and Complexity in Pure Mathematics. Int. J. Bif. Chaos 4, No 1, 3–15

    Article  MATH  MathSciNet  Google Scholar 

  34. Allouche J.-P., (April 1987) Automates finis en Mathématiques et en Physique. Pour la Science 94

    Google Scholar 

  35. Waldschmidt M., (1993) Introduction to recent results in Transcendental Number Theory. Lectures given at the Workshop and Conference in number theory held in Hong-Kong, June 29–July 3 1993, preprint 074-93, M.S.R.I., Berkeley

    Google Scholar 

  36. Cobham A., (1972) Uniform tag sequences. Math. Systems Theory 6, 164–192

    Article  MATH  MathSciNet  Google Scholar 

  37. Loxton J.H. and van der Poorten A.J., (1988) Arithmetic properties of automata: regular sequences. J. Reine Angew. Math. 392, 57–69; Allouche J.-P., personal communication

    MATH  MathSciNet  Google Scholar 

  38. Ferenczi S. and Maduit C., (1997) Transcendence of Numbers with a Low Complexity Expansion. J. of Number Theory 67, 146–161

    Article  MATH  Google Scholar 

  39. Allouche J.-P. and Zamboni L.Q., (1998) Algebraic Irrational Binary Numbers Cannot Be Fixed Points of Non-trivial Constant Length or Primitive Morphisms. J. of Number Theory 69, 119–124

    Article  MATH  MathSciNet  Google Scholar 

  40. Wagon S., (1985) Is π normal? Math. Intelligencer 7, 65–67

    MathSciNet  Google Scholar 

  41. Klee V. and Wagon S., (1989) New and Old Unsolved Problems in Plane Geometry and Number Theory. Mathematical Association of America, Washington D.C.

    Google Scholar 

  42. Borwein J.M., Borwein P.B. and Bailey D.H., (March 1989) Ramanujan, Modular Equations, and Approximations to Pi, or How to Compute One Billion Digits of Pi. Am. Math. Monthly 96, 201–219

    MATH  MathSciNet  Google Scholar 

  43. Bailey D.H., Borwein J.M., Borwein P.B. and Plouffe S., (1997) The Quest for Pi. Math. Intelligencer 19(1), 50–57

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karamanos, K. (2000). From Symbolic Dynamics to a Digital Approach: Chaos and Transcendence. In: Planat, M. (eds) Noise, Oscillators and Algebraic Randomness. Lecture Notes in Physics, vol 550. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45463-2_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-45463-2_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67572-3

  • Online ISBN: 978-3-540-45463-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics