Skip to main content

Diophantine Conditions and Real or Complex Brjuno Functions

  • Conference paper
  • First Online:
Noise, Oscillators and Algebraic Randomness

Part of the book series: Lecture Notes in Physics ((LNP,volume 550))

  • 712 Accesses

Abstract

The continued fraction expansion of the real number x=a 0+x 0, a 0∈ℤ is given by 0≤x n<1, x −1n =a n+1+x n+1+a n+1∈ℕ for n≥0. The Brjuno function is then \( B(x) = \sum\nolimits_{n = 0}^\infty {x_0 x_1 \ldots x_{n - 1} \ln (x_n^{ - 1} )} \) and the number x satisfies the Brjuno diophantine condition whenever B(x) is bounded. Invariant circles under a complex rotation persist when the map is analytically perturbed, if and only if the rotation number satisfies the Brjuno condition, and the same holds for invariant circles in the semi-standard and standard map cases. In this lecture, we will review some properties of the Brjuno function, and give some generalisations related to familiar diophantine conditions. The Brjuno function is highly singular and takes value +∞ on a dense set including rationals. We present a regularisation leading to a complex function holomorphic in the upper half plane. Its imaginary part tends to the Brjuno function on the real axis, the real part remaining bounded, and we also indicate its transformation under the modular group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chirikov, B. (1979) Auniv ersal instability of many-dimensional oscillator systems. Phys. Reports, 52, 263–279

    Article  ADS  MathSciNet  Google Scholar 

  2. Escande, D. (1985) Stochasticity in classical Hamiltonian systems: universal aspects. Phys. Reports, 121, 165–261

    Article  ADS  MathSciNet  Google Scholar 

  3. Greene, J. M. (1979) Ametho d for determining a stochastic transition. J. Math. Phys. 20, 1183–1201

    Article  ADS  Google Scholar 

  4. Aubry S. and Le Daeron, P. (1983) The discrete Frenkel-Kontorova model and its extensions. Physica 8D, 381–422

    ADS  Google Scholar 

  5. Mather J. N. (1984) Non existence of invariant circles. Ergod. Theor. and Dynam. Sys. 4, 301–309

    MATH  MathSciNet  Google Scholar 

  6. Yoccoz J.-C. (1992) An introduction to small divisors problems, in: From Number Theory to Physics, Waldschmidt M., Moussa P., Luck J.-M., and Itzykson C. editors, Springer-Verlag, Berlin, pp. 659–679

    Google Scholar 

  7. Berretti A. and Gentile G. (1998) Scaling properties of the radius of convergence of the Lindstedt series: the standard map. University of Roma, Italy, preprint

    Google Scholar 

  8. Berretti A. and Gentile G. (1998) Bryuno function and the standard map. University of Roma, Italy, preprint

    Google Scholar 

  9. Yoccoz J.-C. (1995) Théorème de Siegel, nombres de Bruno et polynômes quadratiques. Astérisque, 231, 3–88, (appeared first as a preprint in 1987).

    Google Scholar 

  10. Marmi S. and Stark J. (1992) On the standard map critical function. Nonlinearity 5, 743–761

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Carletti T. and Laskar J. (1999) Scaling law in the standard map critical function, interpolating hamiltonian and frequency analysis. (Preprint, Bureau des Longitudes, Paris, in preparation)

    Google Scholar 

  12. Treshev D. and Zubelevitch O. (1998) Invariant tori in Hamiltonian systems with two degrees of freedom in a neighborhood of a resonance. Regular and Chaotic dynamics, 3, 73–81

    Article  MathSciNet  Google Scholar 

  13. Gelfreich G. V. (1999) Apro of of exponentially small transversality of the separatrices for the standard map. Commun. Math. Phys. 201, 155–216

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Davie A. M. (1995) Renormalisation for analytic area preserving maps. University of Edinburgh preprint

    Google Scholar 

  15. Davie A. M. (1994) the critical function for the semistandard map. Nonlinearity 7, 219–229

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Marmi S. (1990) Critical functions for complex analytic maps function. J. Phys. A: Math.Gen. 23, 3447–3474

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Perez-Marco R. (1992) Solution complète du problème de Siegel de linéarisation d’une application holomorphe autour d’un point fixe. Séminaire Bourbaki nr.753, Astérisque, 206, 273–310

    MathSciNet  Google Scholar 

  18. Marmi S., Moussa P., and Yoccoz J.-C. (1997) The Brjuno function and their regularity properties. Commun. Math. Phys. 186, 265–293

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Buric N., Percival I. C., and Vivaldi F. (1990) Critical function and modular smoothing, Nonlinearity 3, 21–37

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. MacKay R. S. (1988) Exact results for an approximate renormalisation scheme and some predictions for the breakup of invariant tori, Physica 33D, 240–265, and Erratum (1989) Physica 36D, 358-265

    ADS  MathSciNet  Google Scholar 

  21. Schweiger F. (1995) Ergodic theory of fibered systems and metric number thory, Clarendon Press, Oxford

    Google Scholar 

  22. Moussa P., Cassa A., and Marmi S. (1999) Continued fractions and Brjuno functions, J. Comput. Appl. Math. 105 403–415

    Article  MATH  MathSciNet  Google Scholar 

  23. Brjuno. A. D. (1971) Analytical form of differential equations, Trans. Moscow Math. Soc. 25 131–288, and, (1972), 26 199-239

    Google Scholar 

  24. Hardy G. H., and Wright E. M. (1938) An introduction to the theory of numbers, Clarendon Press, Oxford, chapter 11, fifth edition 1979

    MATH  Google Scholar 

  25. Garnett J. B. (1981) Bounded Analytic functions, Academic Press, New York.

    MATH  Google Scholar 

  26. Marmi S., Moussa P., and Yoccoz J.-C. (1995) Développements en fractions continues, fonctions de Brjuno et espaces BMO, CEA/Saclay, Note CEA-N-2788

    Google Scholar 

  27. Marmi S., Moussa P., and Yoccoz J.-C. (1999) Complex Brjuno functions, Preprint SPhT/CEASacla y T99/066, 71 p.

    Google Scholar 

  28. Lewin L, (1981) Polylogarithms and Associated Functions, Elsevier North Holland, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moussa, P., Marmi, S. (2000). Diophantine Conditions and Real or Complex Brjuno Functions. In: Planat, M. (eds) Noise, Oscillators and Algebraic Randomness. Lecture Notes in Physics, vol 550. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45463-2_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45463-2_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67572-3

  • Online ISBN: 978-3-540-45463-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics