Skip to main content

Demosaic: Color Filter Array Interpolation for Digital Cameras

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing — PCM 2001 (PCM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2195))

Included in the following conference series:

Abstract

Classical linear signal processing techniques when applied to color demosaic tends to over smooth the color signal, resulting in noticeable artifacts along edges and color features. We proposed in this paper to let the color channels support the edges and the edge support the interpolation of missing color, and thus achieve demosaic full-color image with better perceptual quality. The computational complexity of the proposed algorithm is compatible with other fast demosaic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.E. Bayer, “Color imaging array”, U.S. Patent 3971065, 1976.

    Google Scholar 

  2. N. Ozawa, “Chrominance signal interpolation device for a color camera”, U.S. Patent 4716455.

    Google Scholar 

  3. J.E. Adams, “Interactions between color plane interpolation and other image processing functions in electronic photography,” Proc. of SPIE, vol. 2416, pp.144–151.

    Google Scholar 

  4. T. Sakamoto, et.al., “Software pixel interpolation for digital still cameras suitable for a 32-bit MCU”, IEEE Ram. Consumer Electronics, pp.1342–1352, Nov. 1998.

    Google Scholar 

  5. Z. Hidemori, et.al., “A New digital signal processor for progressive scan CCD”, IEEE Trans. Consumer Electronics, pp.289–295, May 1998.

    Google Scholar 

  6. D.R. Cok, “Single-Chip electronic color camera with color-dependent birefringent optical spatial frequency filter and red and blue signal interpolating circuit”, U.S. Patent 4605956.

    Google Scholar 

  7. K.A. Parulski, “Color Filters and Processing Alternatives for one-chip cameras”, IEEE Trans. Electron Devices, Aug. 1985.

    Google Scholar 

  8. W.H. Chan et.al, “A Mega-Pixel resolution PC Digital Still Camera”, Proc. SPIE, vol.2654, pp.164–171.

    Google Scholar 

  9. Y.T. Tsai, “Optimized Image Processing Algorithms for a Single Sensor Camera”, 1997 IEEE Pacific Rim Con! Communications, Computers and Signal Processing, vol.2, pp.1010–1013, 1997.

    Article  Google Scholar 

  10. X.L. Wu, et.al., “Color Restoration from Digital Camera Data by Pattern Matching”, Proc. SPIE, vol.3018, pp.12–17.

    Google Scholar 

  11. D.R. Cok, “Signal processing method and apparatus for producing interpolated chrominance values in a sampled color image signal”, U.S. Patent, 4642678.

    Google Scholar 

  12. K.A. Parulski, et.al., “A High-Performance Digital Color Video Camera”, Proc. SPIE, vol.1448, pp.45–48.

    Google Scholar 

  13. J.A. Weldy, “Optimized design for a single-sensor color electronic camera system,” Proc. SPIE vol.1071, pp.300–307.

    Google Scholar 

  14. R.H. Hibbasd, “Apparatus and method for adaptively interpolating a full-color image utilizing luminance gradients,” U.S. Patent 5382976.

    Google Scholar 

  15. J.E. Adams, “Color processing in digital cameras,” Eastman Kodak Company.

    Google Scholar 

  16. D.R. Cok, “Signal processing method and apparatus for sampled image signals,” U.S. Patent 4630307.

    Google Scholar 

  17. C.A. Laroche, “Apparatus and method for adaptively interpolating a full color image utilizing chrominance gradients,” U.S. Patent 5373322.

    Google Scholar 

  18. Hamilton Jr. et.al., “Adaptive color plane interpolation in single sensor color electronic camera,” U.S. Patent, 5629734.

    Google Scholar 

  19. J.E. Adams et.al., “Adaptive color plane interpolation in single color electronic camera,” U.S. Patent 5506619, 1996.

    Google Scholar 

  20. J.E. Adams et.al., “Design of practical color filter array interpolation algorithms for digital cameras,” Proc. SPIE, vol.3028, pp.117–125, 1997.

    Article  Google Scholar 

  21. E. Chang, et.al., “Color filter array recovery using a threshold-based variable number of gradients,” to be published in Proc. SPIE, Jan 1999.

    Google Scholar 

  22. R.G. Keys, et.al., “Cubic convolution interpolation for digital image processing”, IEEE Trans on ASSP, pp.1153–1160, 1981.

    Google Scholar 

  23. K.W. Simons, “Digital image reconstruction and resampling for geometric manipulation,” Proc. IEEE Symp. Machine Processing of Remotely Sense Data, p.3A1–3A11, 1975.

    Google Scholar 

  24. D.P. Mitchell, et.al., “Reconstruction filters in computer graphics,” Computer Graphics, (Proc. SIGGRAPH’88), vol.22-no.4, pp.221–228, Aug. 1988.

    Article  Google Scholar 

  25. W.F. Schreiber, et.al., “Transformation between continuous and discrete representations of image: A perceptual appraoch,” IEEE Trans. PAMI, pp.178–186, Mar. 1985.

    Google Scholar 

  26. H.S. Hou, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. ASSP, pp.508–517, 1987.

    Google Scholar 

  27. W.T. Freeman, “Method and apparatus for reconstructing missing color samples,” U.S. Patent 4663655.

    Google Scholar 

  28. W.T. Freeman, “Median filter for reconstructing missing color samples,” U.S. Patent 4724395, 1988.

    Google Scholar 

  29. M.A. Wober, “Method and apparatus for recovering image data through the use of a color test pattern,” U.S. Patent 5475769.

    Google Scholar 

  30. T.A. Matraszek, et.al. “Gradient based method for providing values for unknown pixels in a digital image,” U.S. Patent, 5875040.

    Google Scholar 

  31. D_H. Brainard, et.al., “Bayesian method for reconstructing color images from trichromatic samples,” IS&T 47th Annual Conference, pp.375–380, 1994.

    Google Scholar 

  32. E. Shimizu, et.al., “The digital camera using new compression and interpolation algorithm,” IS&iT 49th Annual Conference, pp.268–273, 1996.

    Google Scholar 

  33. C.H. Wu, et.al., “Reconstruction of color images from a single-chip CCD Sensor based on markov random field models,” Proc. SPIE, vol.2564, pp.282–288.

    Google Scholar 

  34. D.R. Cok, “Reconstruction of CCD images using template matching,” Proc. IS&T Annual Conf. ICPS, pp.380–385, 1994.

    Google Scholar 

  35. B.A. Wandell, Foundations of Vision, Sinauer Associates, Inc., 1995. 1089-2 Fig. 3. (a)Original rose image, (b) Sampled with Bayer color filter array pattern, (c) Demosaic image with proposed algorithm.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lam, SH., Kok, CW. (2001). Demosaic: Color Filter Array Interpolation for Digital Cameras. In: Shum, HY., Liao, M., Chang, SF. (eds) Advances in Multimedia Information Processing — PCM 2001. PCM 2001. Lecture Notes in Computer Science, vol 2195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45453-5_148

Download citation

  • DOI: https://doi.org/10.1007/3-540-45453-5_148

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42680-6

  • Online ISBN: 978-3-540-45453-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics