Hierarchical Approach for Design of Multi-vehicle Multi-modal Embedded Software

  • T. John Koo
  • Judy Liebman
  • Cedric Ma
  • S. Shankar Sastry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2211)


Embedded systems composed of hardware and software components are designed to interact with a physical environment in real-time in order to fulfill control objectives and system specifications. In this paper, we address the complex design challenges in embedded software by focusing on predictive and systematic hierarchical design methodologies which promote system verification and validation. First, we advocate a mix of top-down, hierarchical design and bottom-up, component-based design for complex control systems. Second, it is our point of view that at the level closest to the environment under control, the embedded software needs to be time-triggered for guaranteed safety; at the higher levels, we advocate an asynchronous hybrid controller design. We briefly illustrate our approach through an embedded software design for the control of a group of autonomous vehicles.


Global Position System Hybrid System Software Component Inertial Navigation System Autonomous Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Varaiya. Smart Cars on Smart Roads: Problems of Control, IEEE Transactions on Automatic Control, 38(2):195–207, February 1993.zbMATHCrossRefGoogle Scholar
  2. 2.
    C. Tomlin, G. Pappas, J. Lygeros, D. Godbole, and S. Sastry. Hybrid Control Models of Next Generation Air Traffic Management, Hybrid Systems IV, volume 1273 of Lecture Notes in Computer Science, pages 378–404, Springer Verlag, Berlin, Germany, 1997.Google Scholar
  3. 3.
    P. Varaiya. A Question About Hierarchical Systems, System Theory: Modeling, Analysis and Control, T. Djaferis and I. Schick (eds), Kluwer, 2000.Google Scholar
  4. 4.
    P. Caines, and Y. J. Wei, Hierarchical Hybrid Control Systems: A lattice theoretic formulation, IEEE Transactions on Automatic Control, 43(4), 1998.Google Scholar
  5. 5.
    G. J. Pappas, G. Lafferriere, and S. Sastry. Hierarchically Consistent Control Systems, IEEE Transactions on Automatic Control, 45(6):1144–1160, June 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Models of Computation, IEEE Transactions on Computer-Aided Design ofInte grated Circuits and Systems, 17(12):1217–1229, December 1998.CrossRefGoogle Scholar
  7. 7.
    E. A. Lee. Overview of the Ptolemy Project, Technical Memorandum UCB/ERL, M01/11, University of California, Berkeley, March 2001.Google Scholar
  8. 8.
    G. Berry and G. Gonthier. The Esterel synchronous programming language: Design, semantics, implementation, Science ofComputer Programming, 19(2):87–152, 1992.CrossRefGoogle Scholar
  9. 9.
    A. Benveniste and P. Le Guernic. Hybrid Dynamical Systems Theory and the SIGNAL Language, IEEE Transactions on Automatic Control 35(5):525–546, May 1990.Google Scholar
  10. 10.
    P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A Declarative Language for Programming Synchronous Systems, Conference Record of the 14th Annual ACM Symp. on Principles ofPr ogramming Languages, Munich, Germany, January 1987.Google Scholar
  11. 11.
    F. Maraninchi. The Argos Language: Graphical Representation of Automata and Description of Reactive Systems, in Proceedings ofthe IEEE Workshop on Visual Languages, Kobe, Japan, October 1991.Google Scholar
  12. 12.
    J. Liu, X. Liu, T. J. Koo, B. Sinopoli, S. S. Sastry, and E. A. Lee. Hierarchical Hybrid System Simulation. In Proceedings ofthe 38th Conference on Decision and Control, Phoenix, Arizona. December 1999.Google Scholar
  13. 13.
    H. Kopetz. The Time-Triggered Architecture, in Proceedings ofthe First International Symposium on Object-Oriented Real-Time Distributed Computing, Kyoto, Japan, April 1998.Google Scholar
  14. 14.
    T.A. Henzinger, B. Horowitz, and C. M. Kirsch. Embedded Control Systems Development with Giotto, in Proceedings ofLCTES 2001, Snowbird, Utach, June 2001.Google Scholar
  15. 15.
    A. Isidori. Nonlinear Control Systems, Springer-Verlag, New York, 1995.zbMATHGoogle Scholar
  16. 16.
    S. S. Sastry. Nonlinear Systems: Analysis, Stability, and Control, Springer-Verlag, New York, 1999.zbMATHGoogle Scholar
  17. 17.
    J. Lygeros, C. Tomlin, and S. Sastry. Controllers for Reachability Specifications for Hybrid Systems, Automatica, Volume 35, Number 3, March 1999.Google Scholar
  18. 18.
    I. Mitchell, and C. Tomlin. Level Set Methods for Computation in Hybrid Systems, Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, Springer Verlag, 2000.Google Scholar
  19. 19.
    S. Osher, and J. A. Sethian. Fronts Propagating with Curvature-dependent Speed: Algorithms based on Hamilton-Jacobi Formulations, J. Computat. Phys., vol. 79, pages 12–49, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    T. J. Koo, G. Pappas, and S. Sastry. Mode Switching Synthesis for Reachability Specifications, Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, Springer Verlag, 2001.Google Scholar
  21. 21.
    G. Lafferriere, G.J. Pappas, S. Yovine. Reachability Computation for Linear Hybrid Systems, In Proceedings of the 14th IFAC World Congress, volume E, pages 7–12, Beijing, 1999.Google Scholar
  22. 22.
    E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli, Effective Synthesis of Switching Controllers for Linear Systems, Proceedings of the IEEE, 88(2):1011–1025.Google Scholar
  23. 23.
    A.B. Kurzhanski, P. Varaiya, Ellipsoidal Techniques for Reachability Analysis, Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, 2000.Google Scholar
  24. 24.
    A. Chutinan, B.H. Krogh, Verification of polyhedral-invariant hybrid systems using polygonal flow pipe approximations, Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, 1999.Google Scholar
  25. 25.
    P. Tabuada, G. Pappas, and P. Lima. Feasible Formations of Multi-Agent Systems, in Proceedings ofA merican Control Conference, pages 56–61, Arlington, Virginia, June, 2001.Google Scholar
  26. 26.
    A. Pant, P. Seiler, T. J. Koo, and J. K. Hedrick. Mesh Stability of Unmanned Aerial Vehicle Clusters, in Proceedings ofA merican Control Conference, pages 62–68, Arlington, Virginia, June, 2001.Google Scholar
  27. 27.
    C. Tomlin, J. Lygeros, and S. Sastry. A Game Theoretic Approach to Controller Design for Hybrid Systems, in Proceedings of the IEEE, pages 949–970, Volume 88, Number 7, July 2000.CrossRefGoogle Scholar
  28. 28.
    O. Maler, A. Puneli, and J. Sifakis. On the Synthesis of Discrete Controllers for Timed Systems, in STAC 95: Theoretical Aspects ofComputer Science, E.W. Mayr and C. Puech (eds). Munich, Germany: Springer-Verlag, 1995, vol. 900, Lectures Notes in Computer Science, pages 229–242.Google Scholar
  29. 29.
    E. Asarin, O. Maler, and A. Puneli. Symbolic Controller Synthesis for Discrete and Timed Systems, in Proceedings ofHybrid Systems II, P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry (eds). Berlin, Germany: Springer-Verlag, 1995, vol. 999, Lectures Notes in Computer Science.Google Scholar
  30. 30.
    M. Heymann, F. Lin, and G. Meyer. Control Synthesis for a Class of Hybrid Systems subject to Configuration-Based Safety Constraints, in Hybrid and Real Time Systems, O. Maler (ed). Berlin, Germany: Springer-Verlag, 1997, vol. 1201, Lectures Notes in Computer Science, pages 376–391.Google Scholar
  31. 31.
    H. Wong-Toi. The Synthesis of Controllers for Linear Hybrid Automata, in Proceedings ofIEEE Conference on Control and Decision, San Diego, CA, 1997.Google Scholar
  32. 32.
    T. D. Parsons. Pursuit-Evasion in a Graph, Theory and Application ofGr aphs, pages 426–441, Y. Alani and D. R. Lick (eds), Springer-Verlag, 1976.Google Scholar
  33. 33.
    J. P. Hespanha, H. J. Kim, and S. Sastry. Multiple-Agent Probabilistic Pursuit-Evasion Games, in Proceedings ofIEEE Conference on Decision and Control, pages 2432–2437, Phoenix, Arizona, December 1999.Google Scholar
  34. 34.
    G. C. Buttazzo. Hrad Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications, Kluwer, 1997.Google Scholar
  35. 35.
    F. Balarin, L. Lavagno, P. Murthy, A. Sangiovanni-Vincentelli. Scheduling for Embedded Real-Time Systems, IEEE Design and Test ofComputers, pages 71–82, January 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • T. John Koo
    • 1
  • Judy Liebman
    • 1
  • Cedric Ma
    • 1
  • S. Shankar Sastry
    • 1
  1. 1.Department of Electrical Engineering and Computer SciencesUniversity of California at BerkeleyBerkeley

Personalised recommendations