Learning in Character: Building Autonomous Animated Characters That Learn What They Ought to Learn

  • Bruce M. Blumberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2197)

Abstract

We suggest that the ability to learn from experience and alter its observable behavior accordingly is a fundamental capability of compelling autonomous animated characters. We highlight important lessons from animal learning and training, machine learning, and from the incorporation of learning into digital pets such as AIBO and Dogz. We then briefly present our approach, informed by the lessons above, toward building characters that learn. Finally, we discuss a number of installations we have built that feature characters that learn what they ought to learn.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ballard, D., An Introduction to Natural Computation, MIT Press, Cambridge 1997.Google Scholar
  2. 2.
    Blumberg, B.M., Gaylean, T., Multi-level Direction of Autonomous Creatures for Real-Time Virtual Environments, SIGGRAPH 95 Conference Proceedings, 1995Google Scholar
  3. 3.
    Burke, R., Isla, D., Downie, M., Ivanov, Y. and Blumberg, B., Creature Smarts: The Art and Architecture of a Virtual Brain. Proceedings of the Computer Game Developers Conference, San Jose Ca., 2001Google Scholar
  4. 4.
    Dennett, D. The Intentional Stance. Cambridge, Mass.: MIT Press. 1987.Google Scholar
  5. 5.
    Drescher, G.L. Made-Up Minds:A Constructivist Approach to Artificial Intelligence, MIT Press, Cambridge 1991MATHGoogle Scholar
  6. 6.
    Gallistel, C. R., & Gibbon, J. Time, rate and conditioning. Psychological Review, 107, pp289–344.Google Scholar
  7. 7.
    Gould, J & Gould C. The Animal Mind. W.H. Freeman, New York, N.Y. 1999.Google Scholar
  8. 8.
    Isla, D., Burke, R., Downie M., and Blumberg B. A Layered Brain Architecture for Synthetic Creatures. Proceedings of the International Joint Conference on Artificial Intelligence, Seattle Wa., 2001.Google Scholar
  9. 9.
    Lorenz, K. The Foundations of Ethology. Springer-Verlag, New York, NY. 1981.Google Scholar
  10. 10.
    Plotkin, H., Darwin Machines and the Nature of Knowledge. Harvard University Press, Cambridge Ma. 1994.Google Scholar
  11. 11.
    Pryor, K. Clicker Training for Dogs. Waltham, MA.: Sunshine Books, Inc. 1999.Google Scholar
  12. 12.
    Resner, B., Stern A., Frank, A. The Truth About Catz and Dogz. Proceedings of the Computer Games Developer Conference, San Jose, Ca., 1997.Google Scholar
  13. 13.
    Rose, C.F., Cohen, M., Bodenheimer, B., Verbs and Adverbs: Multidimensional Motion Interpolation-IEEE Computer Graphics And Applications, Volume 18, Number 5, 1999Google Scholar
  14. 14.
    Shettleworth, Sara J. Cognition, Evolution and Behavior. New York: Oxford University Press. 1998.Google Scholar
  15. 15.
    Sutton, R. and Barto, A. Reinforcement Learning: An Introduction. MIT Press: 1998.Google Scholar
  16. 16.
    Thomas, F. and O. Johnson. 1981. The Illusion of Life: Disney Animation. New York: Hyperion.Google Scholar
  17. 17.
    Yoon, S., Blumberg, B.M., Schneider, G.E., Motivation-Driven Learning for Interactive Synthetic Characters, Autonomous Agents 2000 Conference Proceedings, 2000Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Bruce M. Blumberg
    • 1
  1. 1.The Media Lab, MITCambridge

Personalised recommendations