Advertisement

Strong Normalisation for a Gentzen-like Cut-Elimination Procedure

  • Christian Urban
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2044)

Abstract

In this paper we introduce a cut-elimination procedure for classical logic, which is both strongly normalising and consisting of local proof transformations. Traditional cut-elimination procedures, including the one by Gentzen, are formulated so that they only rewrite neighbouring inference rules; that is they use local proof transformations. Unfortunately, such local proof transformation, if defined naïvely, break the strong normalisation property. Inspired by work of Bloo and Geuvers concerning the λx-calculus, we shall show that a simple trick allows us to preserve this property in our cut-elimination procedure. We shall establish this property using the recursive path ordering by Dershowitz.

Keywords

Cut-Elimination Classical Logic Explicit Substitution Recursive Path Ordering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Bloo and H. Geuvers. Explicit Substitution: On the Edge of Strong Normalisation. Theoretical Computer Science, 211(1–2):375–395, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    V. Danos, J.-B. Joinet, and H. Schellinx. A New Deconstructive Logic: Linear Logic. Journal of Symbolic Logic, 62(3):755–807, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    N. Dershowitz. Orderings for Term Rewriting Systems. Theoretical Computer Science, 17:279–301, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Dyckhoff and L. Pinto. Cut-Elimination and a Permutation-Free Sequent Calculus for Intuitionistic Logic. Studia Logica, 60(1):107–118, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Gallier. Constructive Logics. Part I: A Tutorial on Proof Systems and Typed λ-calculi. Theoretical Computer Science, 110(2):249–239, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    G. Gentzen. Untersuchungen üuber das logische Schlieβen I and II. Mathematische Zeitschrift, 39:176–210, 405–431, 1935.CrossRefMathSciNetGoogle Scholar
  7. 7.
    H. Herbelin. A λ-calculus Structure Isomorphic to Sequent Calculus Structure. In Computer Science Logic, volume 933 of LNCS, pages 67–75. Springer Verlag, 1994.Google Scholar
  8. 8.
    J. M. E. Hyland. Proof Theory in the Abstract. Annals of Pure and Applied Logic, 2000. To appear.Google Scholar
  9. 9.
    P. A. Melliès. Typed Lambda Calculi with Explicit Substitutions May Not Terminate. In Typed Lambda Calculi and Applications, volume 902 of LNCS, pages 328–334. Springer Verlag, 1995.CrossRefGoogle Scholar
  10. 10.
    K. H. Rose. Explicit Substitution: Tutorial & Survey. Technical report, BRICS, Department of Computer Science, University of Aarhus, 1996.Google Scholar
  11. 11.
    C. Urban. Classical Logic and Computation. PhD thesis, Cambridge University, October 2000.Google Scholar
  12. 12.
    C. Urban and G. M. Bierman. Strong Normalisation of Cut-Elimination in Classical Logic. Fundamenta Informaticae, 45(1–2):123–155, 2001.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Christian Urban
    • 1
  1. 1.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeUK

Personalised recommendations