Advertisement

Evolving Games and Essential Nets for Affine Polymorphism

  • Andrzej S. Murawski
  • C. -H. Luke Ong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2044)

Abstract

This paper presents a game model of Second-order Intuitionistic Multiplicative Affine Logic (IMAL2). We extend Lamarche’s essential nets to the second-order affine setting and use them to show that the model is fully and faithfully complete.

Keywords

Full Completeness Game Semantics Linear Logic Polymorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S.: Semantics of Interaction: an introduction to Game Semantics. Semantics and Logics of Computation. Cambridge Univ. Press, 1–32Google Scholar
  2. 2.
    Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative linear logic. Journal of Symbolic Logic 59 (1994) 543–574zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Abramsky, S., Lenisa, M.: A Fully-complete PER Model for ML Polymorphic Types. In Proceedings of CSL2000, Annual Conference of the European Association of Computer Science Logic, August 2000, Fischbachau, Germany. LNCS Vol. 1862, Springer-Verlag, 2000Google Scholar
  4. 4.
    Asperti, A.: Light affine logic. In Proc. LICS’98. IEEE Computer Society (1998)Google Scholar
  5. 5.
    Danos, V., Regnier, L.: The Structures of Multiplicatives. Archive for Mathematical Logic, Vol. 28, 1989, 181–203zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Girard, J.-Y.: Quantifiers in Linear Logic II. Preprint, équipe de Logique de Paris VII, 1991Google Scholar
  7. 7.
    Girard, J.-Y.: Light linear logic. Information & Computation 143 (1998) 175–204zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hughes, D. H. D.: Games and definability for System F. In Proceedings of 12th IEEE Symposium on Logic in Computer Science, 1997, IEEE Computer Science SocietyGoogle Scholar
  9. 9.
    Hyland, J. M. E., Ong, C.-H. L.: On Full Abstraction for PCF: I, II & III. Information & Computation (2000) 130 pp, in pressGoogle Scholar
  10. 10.
    Ker, A. D., Nickau, H., Ong, C.-H. L.: A universal innocent game model for the Böhm tree lambda theory. In Proceedings of the 8th Annual Conference on the EACSL, Madrid, Spain, September 1999, LNCS, Vol. 1683 Springer-Verlag, 1999, 405–419Google Scholar
  11. 11.
    Lamarche, F.: Proof Nets for Intuitionistic Linear Logic 1: Essential Nets. Preprint ftp-able from Hypatia, 1994Google Scholar
  12. 12.
    Murawski, A. S., Ong, C.-H. L.: Exhausting Strategies, Joker Games and Full Completeness for IMLL with Unit. In Proc. 8th Conf. CTCS’99. ENTCS 29 (1999)Google Scholar
  13. 13.
    Murawski, A. S., Ong, C.-H. L.: Discreet Games, Light Affine Logic and PTIME Computation. In Proceedings of CSL2000, Annual Conference of the European Association of Computer Science Logic, Fischbachau, Germany. LNCS Vol. 1862, Springer-Verlag, 2000, 427–441Google Scholar
  14. 14.
    Murawski, A. S., Ong, C.-H. L.: Dominator Trees and Fast Verification of Proof Nets. In Proceedings of 15th IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, 2000, 181–191Google Scholar
  15. 15.
    Nickau, H., Ong, C.-H. L.: Games for System F. Working paper, 1999Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Andrzej S. Murawski
    • 1
  • C. -H. Luke Ong
  1. 1.Oxford University Computing LaboratoryOxfordUK

Personalised recommendations