Advertisement

A Deconstruction of Non-deterministic Classical Cut Elimination

  • J. Laird
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2044)

Abstract

This paper shows how a symmetric and non-deterministic cut elimination procedure for a classical sequent calculus can be faithfully simulated using a non-deterministic choice operator to combine different ‘double-negation’ translations of each cut. The resulting interpretation of classical proofs in a λ-calculus with non-deterministic choice leads to a simple proof of termination for cut elimination.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abramsky, R. Jagadeesan. Games and full completeness for multiplicative linear logic. Journal of Symbolic Logic, 59:543–574, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    F. Barbanera, and S. Berardi. A symmetric lambda calculus for classical program extraction. Information and Computation, 125:103–117, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics, revised edition. North-Holland, 1984.Google Scholar
  4. 4.
    A. Blass. A game semantics for linear logic. Annals of Pure and Applied logic, 56:183–220, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    T. Coquand. A semantics of evidence for classical arithmetic. Journal of Symbolic Logic, 60:325–337, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    T. Coquand. Computational content of classical logic. In A. Pitts and P. Dybjer, editor, Semantics and Logics of Computation. Cambridge University Press, 1997.Google Scholar
  7. 7.
    V. Danos, J.-B. Joinet and H. Schellinx. A new deconstructive logic, linear logic. Journal of Symbolic Logic, 62(3), 1996.Google Scholar
  8. 8.
    G. Gentzen. Unterschungen über das logische Schlieén I and II. Mathematische Zeitschrift, 39:176–210, 405–431, 1935.CrossRefMathSciNetGoogle Scholar
  9. 9.
    J.-Y. Girard. Towards a geometry of interaction. In Categories in Computer Science and Logic, volume 92 of Contemporary Mathematics, 1989.Google Scholar
  10. 10.
    J.-Y. Girard. A new constructive logic: classical logic. Mathematical structures in Computer Science, 1:259–256, 1991.MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.-Y. Girard. On the unity of logic. Annals of Pure and Applied Logic, 59:201–217, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    J.-Y. Girard, P. Taylor and Y. Lafont. Proofs and Types. Cambridge University Press, 1990.Google Scholar
  13. 13.
    K. Gödel. On intuitionistic arithmetic and number theory. In M. Davis, editor, The undecidable, pages 75–81. Raven Press, 1965.Google Scholar
  14. 14.
    T. Griffin. A formulae-as-types notion of control. In Proc. ACM Conference on the Principles of Programming Languages, pages 47–58. ACM Press, 1990.Google Scholar
  15. 15.
    M. Hennessey, and E. Ashcroft. Parameter passing and non-determinism. In Conference report of the ninth ACM Conference on Theory of Computing, pages 306–311, 1977.Google Scholar
  16. 16.
    M. Parigot. λμ calculus: an algorithmic interpretation of classical natural deduction. In Proc. International Conference on Logic Programming and Automated Reasoning, pages 190–201. Springer, 1992.Google Scholar
  17. 17.
    C. Urban, and G. Bierman. Strong normalisation of cut-elimination in classical logic. In Proceedings of TLCA `99, number 1581 in LNCS, pages 356–380. Springer, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • J. Laird
    • 1
  1. 1.COGS, University of SussexUK

Personalised recommendations