Advertisement

Deciding Monadic Theories of Hyperalgebraic Trees

  • Teodor Knapik
  • Damian Niwiński
  • Paweł Urzyczyn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2044)

Abstract

We show that the monadic second-order theory of any infinite tree generated by a higher-order grammar of level 2 subject to a certain syntactic restriction is decidable. By this we extend the result of Courcelle [6] that the MSO theory of a tree generated by a grammar of level 1 (algebraic) is decidable. To this end, we develop a technique of representing infinite trees by infinite λ-terms, in such a way that the MSO theory of a tree can be interpreted in the MSO theory of a λ-term.

Keywords

Free Variable Order Theory Variable Node Computation Path Reduction Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Arnold and D. Niwiński. Rudiments of μ-calculus. Elsevier, 2001.Google Scholar
  2. 2.
    A. Asperti, V. Danos, C. Laneve, and L. Regnier. Paths in the lambda-calculus. In Proc. 9th IEEE Symp. on Logic in Comput. Sci., pages 426–436, 1994.Google Scholar
  3. 3.
    A. Asperti and S. Guerrini. The optimal implementation of functional programming languages. In Cambridge Tracts in Theoretical Computer Science, volume 45. Cambridge University Press, 1998.Google Scholar
  4. 4.
    A. Berarducci and M. Dezani-Ciancaglini. Infinite lambda-calculus and types. Theoret. Comput. Sci., 212:29–75, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. Caucal. On infinite transition graphs having a decidable monadic second-order theory. In F. M. auf der Heide and B. Monien, editors, 23th International Colloquium on Automata Languages and Programming, LNCS 1099, pages 194–205, 1996. A long version will appear in TCS.Google Scholar
  6. 6.
    B. Courcelle. The monadic second-order theory of graphs IX: Machines and their behaviours. Theoretical Comput. Sci., 151:125–162, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    W. Damm. The IO-and OI-hierarchies. Theoretical Comput. Sci., 20(2):95–208, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    H. Hungar. Model checking and higher-order recursion. In L. P. M. Kuty lowski and T. Wierzbicki, editors, Mathematical Foundations of Computer Science 1999, LNCS 1672, pages 149–159, 1999.CrossRefGoogle Scholar
  9. 9.
    J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Infinitary lambda calculus. Theoret. Comput. Sci., 175:93–125, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    T. Knapik, D. Niwiński, and P. Urzyczyn. Deciding monadic theories of hyperal-gebraic trees, 2001. http://www.univ-reunion.fr/~knapik/publications/
  11. 11.
    O. Kupferman and M. Vardi. An automata-theoretic approach to reasoning about infinite-state systems. In Computer Aided Verification, Proc. 12th Int. Conference, Lecture Notes in Computer Science. Springer-Verlag, 2000.Google Scholar
  12. 12.
    D. Niwiński. Fixed points characterization of infinite behaviour of finite state systems. Theoretical Comput. Sci., 189:1–69, 1997.CrossRefzbMATHGoogle Scholar
  13. 13.
    M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans. Amer. Soc, 141:1–35, 1969.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Z. Splawski and P. Urzyczyn. Type fixpoints: iteration vs. recursion. In Proc. 4th ICPF, pages 102–113. ACM, 1999.Google Scholar
  15. 15.
    W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 3, pages 389–455. Springer-Verlag, 1997.Google Scholar
  16. 16.
    I. Walukiewicz. Monadic second-order logic on tree-like structures. In C. Puech and R. Reischuk, editors, Proc. STACS’ 96, pages 401–414. Lect. Notes Comput. Sci. 1046, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Teodor Knapik
    • 1
  • Damian Niwiński
    • 2
  • Paweł Urzyczyn
    • 2
  1. 1.Dept. de Mathématiques et InformatiqueUniversité de la RéunionSaint Denis Messageries Cedex 9 RéunionGermany
  2. 2.Institute of InformaticsWarsaw UniversityWarszawaPoland

Personalised recommendations