Advertisement

Strong Normalization of Classical Natural Deduction with Disjunction

  • Philippe de Groote
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2044)

Abstract

We introduce λμ →∧∨⊥ an extension of Parigot’s λμ-calculus where disjunction is taken as a primitive. The associated reduction rela- tion, which includes the permutative conversions related to disjunction, is Church-Rosser, strongly normalizing, and such that the normal de- ductions satisfy the subformula property. From a computer science point of view, λμ →∧∨⊥ may be seen as the core of a typed cbn functional language featuring product, coproduct, and control operators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Barbanera and S. Berardi. Extracting constructive content from classical logic via control-like reductions. In M. Bezem and J.F. Groote, editors, Proceedings of the International Conference on Typed Lambda Calculi and Applications, TLCA’93, volume 664 of Lecture Notes in Computer Science, pages 45–59. Springer Verlag, 1993.CrossRefGoogle Scholar
  2. 2.
    F. Barbanera and S. Berardi. A symmetric lambda-calculus for “classical” program extraction. In M. Hagiya and J.C. Mitchell, editors, Proceedings of the International Symposium on Theoretical Aspects of Computer Software, volume 789 of Lecture Notes in Computer Science, pages 494–515. Springer Verlag, 1994.Google Scholar
  3. 3.
    H.P. Barendregt. The lambda calculus, its syntax and semantics. North-Holland, revised edition, 1984.Google Scholar
  4. 4.
    R. Constable and C. Murthy. Finding computational content in classical proofs. In G. Huet and G. Plotkin, editors, Logical Frameworks, pages 341–362. Cambridge University Press, 1991.Google Scholar
  5. 5.
    Ph. de Groote. A CPS-translation of the λμ-calculus. In S. Tison, editor, 19th International Colloquium on Trees in Algebra and Programming, CAAP’94, volume 787 of Lecture Notes in Computer Science, pages 85–99. Springer Verlag, 1994.CrossRefGoogle Scholar
  6. 6.
    Ph. de Groote. A simple calculus of exception handling. In M. Dezani-Ciancaglini and G. Plotkin, editors, Second International Conference on Typed Lambda Calculi and Applications, TLCA’95, volume 902 of Lecture Notes in Computer Science, pages 201–215. Springer Verlag, 1995.CrossRefGoogle Scholar
  7. 7.
    Ph. de Groote. On the strong normalisation of natural deduction with permutation-conversions. In 10th International Conference on Rewriting Techniques and Applications, RTA’99, volume 1631 of Lecture Notes in Computer Science, pages 45–59. Springer Verlag, 1999.Google Scholar
  8. 8.
    M. Felleisen, D.P. Friedman, E. Kohlbecker, and B. Duba. A syntactic theory of sequential control. Theoretical Computer Science, 52:205–237, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Felleisen and R. Hieb. The revised report on the syntactic theory of sequential control and state. Theoretical Computer Science, 102:235–271, 1992.CrossRefMathSciNetGoogle Scholar
  10. 10.
    G. Gentzen. Recherches sur la déduction logique (Untersuchungen über das logische schliessen). Presses Universitaires de France, 1955. Traduction et commentaire par R. Feys et J. Ladriére.Google Scholar
  11. 11.
    J.-Y. Girard. A new constructive logic: Classical logic. Mathematical Structures in Computer Science, 1:255–296, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1989.Google Scholar
  13. 13.
    T. G. Griffin. A formulae-as-types notion of control. In Conference record of the seventeenth annual ACM symposium on Principles of Programming Languages, pages 47–58, 1990.Google Scholar
  14. 14.
    W.A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors, to H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490. Academic Press, 1980.Google Scholar
  15. 15.
    J.-L. Krivine. Classical logic, storage operators and second order λ-calculus. Annals of Pure and Applied Logic, 68:53–78, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. Meyer and M. Wand. Continuation semantics in typed lambda-calculi (summary). In R. Parikh, editor, Logics of Programs, volume 193 of Lecture Notes in Computer Science, pages 219–224. Springer Verlag, 1985.Google Scholar
  17. 17.
    C. R. Murthy. An evaluation semantics for classical proofs. In Proceedings of the sixth annual IEEE symposium on logic in computer science, pages 96–107, 1991.Google Scholar
  18. 18.
    C. R. Murthy. A computational analysis of Girard’s translation and LC. In Proceedings of the seventh annual IEEE symposium on logic in computer science, pages 90–101, 1992.Google Scholar
  19. 19.
    M. Parigot. λμ-Calculus: an algorithmic interpretation of classical natural deduction. In A. Voronkov, editor, Proceedings of the International Conference on Logic Programming and Automated Reasoning, volume 624 of Lecture Notes in Artificial Intelligence, pages 190–201. Springer Verlag, 1992.Google Scholar
  20. 20.
    M. Parigot. Strong normalization for second order classical natural deduction. In Proceedings of the eighth annual IEEE symposium on logic in computer science, pages 39–46, 1993.Google Scholar
  21. 21.
    M. Parigot. Proofs of strong normalisation for second order classical natural deduction. Journal of Symbolic Logic, 62(4):1461–1479, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science, 1:125–159, 1975.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    D. Prawitz. Natural Deduction, A Proof-Theoretical Study. Almqvist & Wiksell, Stockholm, 1965.zbMATHGoogle Scholar
  24. 24.
    D. Prawitz. Ideas and results in proof-theory. In J.E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages 237–309. North-Holland, 1971.Google Scholar
  25. 25.
    D. Pym and E. Ritter. On the semantics of classical disjunction. Journal of Pure and Applied Algebra, To appear.Google Scholar
  26. 26.
    N.J. Rehof and M.H. Sørensen. The λΔ-calculus. In M. Hagiya and J.C. Mitchell, editors, Proceedings of the International Symposium on Theoretical Aspects of Computer Software, TACS’94, pages 516–542. Lecture Notes in Computer Science, 789, Springer Verlag, 1994.Google Scholar
  27. 27.
    E. Ritter, D. Pym, and L. Wallen. On the intuitionistic force of classical search. Theoretical Computer Science, 232:299–333, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    E. Ritter, D. Pym, and L. Wallen. Proof-terms for classical and intuitionistic resolution. Journal of Logic and Computation, 10(2):173–207, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    J. Seldin. On the proof theory of the intermediate logic MH. Journal of Symbolic Logic, 51(3):626–647, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    G. Stålmarck. Normalization theorems for full first-order classical natural deduction. Journal of Symbolic Logic, 56(1):129–149, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    A. Troelstra and D. van Dalen. Constructivism in Mathematics, volume II. North-Holland, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Philippe de Groote
    • 1
  1. 1.LORIA UMR no 7503 - INRIACampus ScientifiqueVandœvre lès Nancy CedexFrance

Personalised recommendations