Skip to main content

Resampling vs Reweighting in Boosting a Relational Weak Learner

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2175))

Abstract

Boosting is a powerful and thoroughly investigated learning technique that improves the accuracy of any given learning algorithm by weighting training examples and hypotheses. Several authors contributed to the general boosting learning framework with theoretical and experimental results, mainly in the propositional learning framework. In a previous paper, we investigated the applicability of Freund and Schapire’s AdaBoost.M1 algorithm to a first order logic weak learner. In this paper, we extend the weak learner in order to directly deal with weighted instances and compare two ways to apply boosting to such a weak learner: resampling instances at each round and using weighted instances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. L. Allwein, R. E. Schapire and Y. Singer (2000). Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research, 1, 113–141.

    Article  MathSciNet  Google Scholar 

  2. C. Anglano, A. Giordana, G. Lo Bello and L. Saitta (1998). An Experimental Evaluation of Coevolutive Concept Learning. Proc. 15th Int. Conf. on Machine Learning (Madison, WI, 1998), pp. 19–27.

    Google Scholar 

  3. F. Bergadano, A. Giordana and L. Saitta (1988). Learning Concepts in Noisy Environment. IEEE Transaction on Pattern Analysis and Machine Intelligence, PAMI-10, 555–578.

    Google Scholar 

  4. F. Bergadano, A. Giordana and L. Saitta (1991). Machine Learning: An Integrated Framework and its Applications. Hellis Horwood, Chichester, UK.

    Google Scholar 

  5. M. Botta and A. Giordana (1993). Smart+: A MultiStrategy Learning Tool. Proc. of the 13th Int. Joint Conf. on Artificial Intelligence, (Chambery, France, 1993), pp. 937–943.

    Google Scholar 

  6. M. Botta and R. Piola (2000). Refining Numerical Constants in Structured First Order Logic Theories. Machine Learning Journal, 38, 109–131.

    Article  Google Scholar 

  7. M. Botta (2001). WIL: a First Order Logic Weak Learner for Boosting. Technical Report RT 60/01, Dipartimento di Informatica, Università di Torino, <http://www.di.unito.it/~botta/rt60-01.pdf>.

  8. L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone (1984). Classification and Regression Trees. Wadsworth & Brooks.

    Google Scholar 

  9. L. Breiman (1996). Bagging Predictors. Machine Learning, 24, 123–140.

    Google Scholar 

  10. L. Breiman (1998). Arcing Classifiers. The Annals of Statistics, 26, 801–849.

    Article  MathSciNet  Google Scholar 

  11. L. Dehaspe, H. Toivonen and R. King (1998). Finding frequent substructures in chemical compounds. Proc. of the 4th Int. Conf. On Knowledge Disciovery and Data Mining (New York, NY, 1998), pp. 30–66.

    Google Scholar 

  12. R. DeMori, A. Giordana, P. Laface and L. Saitta (1984). An Expert System for Mapping Acoustic Cues into Phoenetic Features. Information Sciences, 33, 115–155.

    Article  Google Scholar 

  13. T. G. Dietterich and G Bakiri (1995). Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of AI Research, 2, 263–286.

    MATH  Google Scholar 

  14. F. Esposito, D. Malerba and G. Semeraro (1992). Classification in noisy environments using a distance measure between structural symbolic descriptions. IEEE Transactions on Pattern Analisys and Machine Intelligence, PAMI-14(3), 390–402.

    Google Scholar 

  15. F. Esposito, D. Malerba, G. Semeraro, and M. Pazzani (1993). A Machine Learning Approach to Document Understanding. Proc. of the 2nd International Workshop on Multistrategy Learning, (Harpers Ferry, WV, 1993), pp. 276–292.

    Google Scholar 

  16. Y. Freund and R. E. Schapire (1996). Experiments with a New Boosting Algorithm. Proc. of the 13th Int. Conf. on Machine Learning, (Bari, Italy, 1996), pp. 148–156.

    Google Scholar 

  17. Y. Freund and R. E. Schapire (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119–139.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Giordana and F. Neri (1996). Search-intensive Concept Induction. Evolutionary Computation, 3, 375–416.

    Google Scholar 

  19. A. Giordana, F. Neri, L. Saitta and M. Botta (1997). Integrating Multiple Learning Strategies in First Order Logics. Machine Learning, 27, 209–240.

    Article  MATH  Google Scholar 

  20. A. Giordana, L. Saitta and M. Botta (1999). An Experimental Study of Phase Transitions in Matching. Proc. 16th Int. Joint Conf. on Artificial Intelligence, (Stockholm, Sweden, 1999), pp. 1198–1203.

    Google Scholar 

  21. R. King, A. Srinivasan and M. Stenberg (1995). Relating chemical activity to structure: an examination of ILP successes. New Generation Computing, 13.

    Google Scholar 

  22. R. S. Michalski (1983). A Theory and Methodology of Inductive Learning. Artificial Intelligence, 20, 111–161.

    Article  MathSciNet  Google Scholar 

  23. S. Muggleton (Ed.). (1992). Inductive Logic Programming. Academic Press, London. UK.

    MATH  Google Scholar 

  24. S. Muggleton (1995). Inverse Entailment and Progol. New Generation Computing, 13, 245–286.

    Article  Google Scholar 

  25. J. R. Quinlan (1990). Learning Logical Definitions from Relations. Machine Learning, 5, 239–266.

    Google Scholar 

  26. J. R. Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

    Google Scholar 

  27. J. R. Quinlan (1996). Boosting First-Order Learning. LNAI, 1160, 143–155.

    Google Scholar 

  28. J. R. Quinlan (1996). Bagging, Boosting, and C4.5. Proc. of the 14th AAAI, (Portland, OR, 1996), pp. 725–730.

    Google Scholar 

  29. M. Sebag and C. Rouveirol (1997). Tractable Induction and Classification in First Order Logic via Stochastic Matching. Proc. of the 15th Int. Joint Conf. On Artificial Intelligence, (Nagoya, Japan, 1997), pp. 888–893.

    Google Scholar 

  30. G. Towell and J. Shavlik (1994). Knowledge Based Artificial Neural Networks. Artificial Intelligence, 70, 119–166.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Botta, M. (2001). Resampling vs Reweighting in Boosting a Relational Weak Learner. In: Esposito, F. (eds) AI*IA 2001: Advances in Artificial Intelligence. AI*IA 2001. Lecture Notes in Computer Science(), vol 2175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45411-X_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45411-X_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42601-1

  • Online ISBN: 978-3-540-45411-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics