A Practical Program of Automated Proving for a Class of Geometric Inequalities

  • Lu Yang
  • Ju Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2061)

Abstract

An inequality-proving algorithm based on cell decomposition and a practical program written in Maple are presented, which can efficiently treat inequality-type theorems involving radicals, especially, a class of geometric inequalities including most of the theorems in a wellknown book on the subject.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bottema, O. Dordevic, R. Z. Janic, R. R. Mitrinovic, D. S. & Vasic, P. M. Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1969.MATHGoogle Scholar
  2. 2.
    Chou, S. C. Gao, X. S. & Arnon, D. S., On the mechanical proof of geometry theorems involving inequalities, Advances in Computing Research, 6, JAI Press Inc., pp. 139–181, 1992.Google Scholar
  3. 3.
    Dolzmann, A., Sturm, T. & Weispfenning, V., A new approach for automatic theorem proving in real geometry, Journal of Automated Reasoning, 21(3), 357–380, 1998.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dolzmann, A. Sturm, T. & Weispfenning, V. Real quantifier elimination in practice, Algorithmic Algebra and Number Theory, B. H. Matzat, G.-M. Greuel & G. Hiss (eds.), Springer-Verlag, Berlin Heidelberg, pp. 221–247, 1998.Google Scholar
  5. 5.
    Janous, W., Problem 1137, Crux Math., 12, 79, 177, 1986.Google Scholar
  6. 6.
    Kuang, J. C. Applied Inequalities (in Chinese), 2nd ed., Hunan Educational Publishing House, China, 1993.Google Scholar
  7. 7.
    Liu, B. Q., A collection of geometric inequalities discovered with BOTTEMA (in Chinese), Research Communications on Inequalities, 31, 2001 (to appear).Google Scholar
  8. 8.
    McPhee, N. F., Chou, S. C. & Gao, X. S.: Mechanically proving geometry theorems using a combination of Wu’s method and Collins’ method. Proc. CADE-12, LNCS 814, Springer-Verlag, Berlin Heidelberg, pp. 401–415, 1994.Google Scholar
  9. 9.
    Mitrinovic, D. S., Pecaric, J. E. & Volenec, V., Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, Boston Dordrecht, 1989.MATHGoogle Scholar
  10. 10.
    Shan, Z. (ed.), Geometric Inequality in China (in Chinese), Jiangsu Educational Publishing House, China, 1996.Google Scholar
  11. 11.
    Wu W.-t., On a finiteness theorem about problem involving inequalities, Sys. Sci. & Math. Scis., 7, 193–200, 1994.MATHGoogle Scholar
  12. 12.
    Wu W.-t., On global-optimization problems, Proc. ASCM’ 98, Lanzhou University Press, Lanzhou, pp. 135–138, 1998.Google Scholar
  13. 13.
    Yang, L., Recent advances in automated theorem proving on inequalities, J. Comput. Sci. & Technol., 14(5), 434–446, 1999.MATHCrossRefGoogle Scholar
  14. 14.
    Yang, L., Hou, X. R. & Xia, B. C., Automated discovering and proving for geometric inequalities, Automated Deduction in Geometry, X. S. Gao, D. Wang & L. Yang (eds.), LNAI 1669, Springer-Verlag, Berlin Heidelberg, pp. 30–46, 1999.CrossRefGoogle Scholar
  15. 15.
    Yang, L., Hou, X. R. & Xia, B. C., A complete algorithm for automated discovering of a class of inequality-type theorems, Science in China, Series F 44(1), 33–49, 2001.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Lu Yang
    • 1
  • Ju Zhang
    • 2
  1. 1.Chengdu Institute of Computer ApplicationsChinese Academy of SciencesChina
  2. 2.GCTECH Info. Tech. Ltd.BeijingChina

Personalised recommendations