Skip to main content

Qubit Logic, Algebra and Geometry

  • Conference paper
  • First Online:
Book cover Automated Deduction in Geometry (ADG 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2061))

Included in the following conference series:

  • 373 Accesses

Abstract

A qubit is a two-state quantum system, in which one bit of binary information can be stored and recovered. A qubit differs from an ordinary bit in that it can exist in a complex linear combination of its two basis states, where combinations differing by a factor are identified. This projective line, in turn, can be regarded as an entity within a Clifford or geometric algebra, which endows it with both an algebraic structure and an interpretation as a Euclidean unit 2-sphere. Testing a qubit to see if it is in a basis state generally yields a random result, and attempts to explain this in terms of random variables parametrized by the points of the spheres of the individual qubits lead to contradictions. Geometric reasoning forces one to the conclusion that the parameter space is a tensor product of projective lines, and it is shown how this structure is contained in the tensor product of their geometric algebras.

Acknowledgements

The author thanks David Cory (MIT) and Chris Doran (Cambridge) for useful discussions on the topics covered herein. This work was supported by the U. S. Army Research Office under grant DAAG 55-97-1-0342 from DARPA/MTO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Z. Albert. Quantum Mechanics and Experience. Harvard Univ. Press (Cambridge, MA), 1992.

    Google Scholar 

  2. A. Peres. Quantum Theory: Concepts and Methods. Kluwer Academic (Amsterdam, NL), 1993.

    MATH  Google Scholar 

  3. D. C. Brody and L. P. Hughston. Statistical geometry in quantum mechanics. Proc. R. Soc. Lond. A, 454:2445–2475, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. C. Brody and L. P. Hughston. Information content for quantum states. J. Math. Phys., 41:2586–2592, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Ablamowicz, P. Lounesto, and J. M. Parra, eds. Clifford Algebras with Numeric and Symbolic Computations. Birkhäuser (Boston, MA), 1996.

    MATH  Google Scholar 

  6. T. F. Havel, B. Sturmfels, and N. White. Proposal for a geometric algebra software package. SIGSAM, 23(1):13–15, Jan. 1989.

    Article  MATH  Google Scholar 

  7. T. F. Havel and I. Najfeld. A new system of equations, based on geometric algebra, for ring closure in cyclic molecules. In J. Fleischer, J. Grabmeier, F. W. Hehl, and W. Küchlin, eds., Computer Algebra in Science and Engineering, pp. 243–259. World Scientific (Singapore; River Edge, NJ; London, UK; Hong Kong), 1995.

    Google Scholar 

  8. T. F. Havel. Computational synthetic geometry with Clifford algebra. In D. Wang, ed., Automated Deduction in Geometry (ADG’96), vol. 1360 of Lect. Notes in Artif. Intel., pp. 102–114. Springer-Verlag (Berlin & Heidelberg, D), 1997.

    Chapter  Google Scholar 

  9. D. Wang. Clifford algebraic calculus for geometric reasoning. In D. Wang, ed., Automated Deduction in Geometry (ADG’96), vol. 1360 of Lect. Notes in Artif. Intel., pp. 115–140. Springer-Verlag (Berlin & Heidelberg, D), 1997.

    Chapter  Google Scholar 

  10. T. Boy de la Tour, S. Fèvre, and D. Wang. Clifford term rewriting for geometric reasoning in 3D. In X.-S. Gao, D. Wang, and L. Yang, eds., Automated Deduction in Geometry (ADG’98), vol. 1669 of Lect. Notes Artif. Intel., pp. 130–155. Springer-Verlag (Berlin & Heidelberg, D), 1999.

    Chapter  Google Scholar 

  11. H. Li. Hyperbolic geometry with Clifford algebra. Acta Appl. Math., 48:317–358, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Li. Some applications of Clifford algebra to geometries. In X.-S. Gao, D. Wang, and L. Yang, eds., Automated Deduction in Geometry (ADG’98), vol. 1669 of Lect. Notes in Artif. Intel., pp. 156–179. Springer-Verlag (Berlin & Heidelberg, D), 1999.

    Chapter  Google Scholar 

  13. H. Li. Doing geometric research with Clifford algebra. In R. Ablamowicz and B. Fauser, eds., Clifford Algebras and their Applications to Mathematical Physics, vol. 18 of Prog. Math. Phys., pp. 195–218. Birkhäuser (Boston, MA), 2000.

    Google Scholar 

  14. C. P. Williams and S. H. Clearwater. Ultimate Zero and One. Springer-Verlag (New York, NY), 1999.

    MATH  Google Scholar 

  15. T. F. Havel, S. S. Somaroo, C.-H. Tseng, and D. G. Cory. Principles and demonstrations of quantum information processing by NMR spectroscopy. Appl. Algebra Eng. Commun. Comput., 10:339–374, 2000. In T. Beth and M. Grassl, eds., Special Issue: Quantum Computing (see also LANL preprint quant-ph/9812086).

    Google Scholar 

  16. C. H. Bennett and D. P. DiVincenzo. Quantum information and computation. Nature, 404:247–255, 2000.

    Article  Google Scholar 

  17. C. H. Bennett. The thermodynamics of computation: A review. Intnl. J. Theor. Phys., 21:905–940, 1982.

    Article  Google Scholar 

  18. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum computation. Phys. Rev. A, 52:3457–3467, 1995.

    Article  Google Scholar 

  19. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26:1484–1509, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  20. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum computing. SIAM J. Comput., 26:1510–1523, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  21. T. Needham. Visual Complex Analysis. Clarendon Press (Oxford, UK), 2000.

    Google Scholar 

  22. T. F. Havel and C. J. L. Doran. Geometric algebra in quantum information processing. Contemporary Math. Series, Am. Math. Soc. (Providence, RI), in press, 2001 (see LANL preprint quant-ph/0004031).

    Google Scholar 

  23. D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus. D. Reidel (Dordrecht, NL), 1984.

    MATH  Google Scholar 

  24. C. J. L. Doran, A. N. Lasenby, and S. F. Gull. States and operators in the spacetime algebra. Found. Phys., 23:1239–1264, 1993.

    Article  MathSciNet  Google Scholar 

  25. P. Lounesto. Clifford Algebras and Spinors. London Math. Soc. Lect. Notes 239. Cambridge Univ. Press (Cambridge, UK), 1997.

    MATH  Google Scholar 

  26. D. Hestenes. New Foundations for Classical Mechanics (2nd ed.). Kluwer Academic (Amsterdam, NL), 1999.

    MATH  Google Scholar 

  27. S. S. Somaroo, D. G. Cory, and T. F. Havel. Expressing the operations of quantum computing in multiparticle geometric algebra. Phys. Lett. A, 240:1–7, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Grassl, M. Rötteler, and T. Beth. Computing local invariants of qubit systems. Phys. Rev. A, 58:1833–1839, 1998.

    Article  MathSciNet  Google Scholar 

  29. D. M. Greenberger, M. A. Horne, and A. Zeilinger. Multiparticle interferometry and the superposition principle. Physics Today, 46:22–29, Aug. 1993.

    Article  Google Scholar 

  30. N. D. Mermin. Quantum mysteries refined. Am. J. Phys., 62:880–887, 1994.

    Article  MathSciNet  Google Scholar 

  31. J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature, 403:515–519, 2000.

    Article  Google Scholar 

  32. R. J. Nelson, D. G. Cory, and S. Lloyd. Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance. Phys. Rev. A, 61:002106, 2000.

    Article  Google Scholar 

  33. C. H. Bennett and P. W. Shor. Quantum information theory. IEEE Trans. Info. Th., 44:2724–2742, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  34. S. L. Lomonaco, Jr. An entangled tale of quantum entanglement. Contemporary Math. Series, Am. Math. Soc. (Providence, RI), in press, 2001 (see LANL preprint quant-ph/0101120).

    Google Scholar 

  35. D. G. Cory, R. Laflamme, E. Knill, L. Viola, T. F. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf, G. Teklemarian, Y. S. Weinstein, and Z. H. Zurek. NMR based quantum information processing. Prog. Phys., 48:875–907, 2000.

    Google Scholar 

  36. R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21:467–488, 1982.

    Article  MathSciNet  Google Scholar 

  37. S. Lloyd. Universal quantum simulator. Science, 273:1073–1078, 1996.

    Article  MathSciNet  Google Scholar 

  38. S. S. Somaroo, C.-H. Tseng, T. F. Havel, R. Laflamme, and D. G. Cory. Quantum simulations on a quantum computer. Phys. Rev. Lett., 82:5381–5384, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Havel, T.F. (2001). Qubit Logic, Algebra and Geometry. In: Richter-Gebert, J., Wang, D. (eds) Automated Deduction in Geometry. ADG 2000. Lecture Notes in Computer Science(), vol 2061. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45410-1_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-45410-1_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42598-4

  • Online ISBN: 978-3-540-45410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics