Skip to main content

Points, Lines, and Planes and Their Optimal Estimation

  • Conference paper
  • First Online:
Pattern Recognition (DAGM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2191))

Included in the following conference series:

Abstract

We present a method for estimating unknown geometric entities based on identical, incident, parallel or orthogonal observed entities. These entities can be points and lines in 2D and points, lines and planes in 3D. We don’t need any approximate values for the unknowns. The entities are represented as homogeneous vectors or matrices, which leads to an easy formulation for a linear estimation model. Applications of the estimation method are manifold, ranging from 2D corner detection to 3D grouping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Duda and P. Hart. Pattern classification and scene analysis, 1973.

    Google Scholar 

  2. O. Faugeras and T. Papadopoulo. Grassmann-cayley algebra for modeling systems of cameras and the algebraic equations of the manifold of trifocal tensors. In Trans. of the ROYAL SOCIETY A, 365, pages 1123–1152, 1998.

    Article  MathSciNet  Google Scholar 

  3. W. Förstner. On Estimating 2D Points and Lines from 2D Points and Lines. In Festschrift anläβlich des 60. Geburtstages von Prof. Dr.-Ing. Bernhard Wrobel, pages 69–87. Technische Universität Darmstadt, 2001.

    Google Scholar 

  4. W. Förstner, A. Brunn, and S. Heuel. Statistically testing uncertain geometric relations. In G. Sommer, N. Krüger, and Ch. Perwass, editors, Mustererkennung 2000, pages 17–26. DAGM, Springer, September 2000.

    Google Scholar 

  5. C. Fuchs. Extraktion polymorpher Bildstrukturen und ihre topologische und geometrische Gruppierung. DGK, Bayer. Akademie der Wissenschaften, Reihe C, Heft 502, 1998.

    Google Scholar 

  6. R.I. Hartley and A. Zisserman. Multiple View Geometry. Cambridge University Press, 2000.

    Google Scholar 

  7. K. Kanatani. Statistical Optimization for Geometric Computation: Theoryand Practice. Elsevier Science, 1996.

    Google Scholar 

  8. E. M. Mikhail and F. Ackermann. Observations and Least Squares. University Press of America, 1976.

    Google Scholar 

  9. B. Steines and S. Abraham. Metrischer Trifokaltensor für die Auswertung von Bildfolgen. In W. Förstner, J.M. Buhmann, A. Faber, and P. Faber, editors, Mustererkennung’ 99, LNCS, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-VerlagBerlin Heidelberg

About this paper

Cite this paper

Heuel, S. (2001). Points, Lines, and Planes and Their Optimal Estimation. In: Radig, B., Florczyk, S. (eds) Pattern Recognition. DAGM 2001. Lecture Notes in Computer Science, vol 2191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45404-7_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45404-7_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42596-0

  • Online ISBN: 978-3-540-45404-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics