Skip to main content

Effect of Boundary Condition Fluctuations on Smoluchowski Reaction Rates

Dedicated to Lutz Schimansky-Geier, half a century wise

  • Conference paper
  • First Online:
Stochastic Processes in Physics, Chemistry, and Biology

Part of the book series: Lecture Notes in Physics ((LNP,volume 557))

Abstract

We formulate, solve, and examine an elementary model of gated absorption, where the reactivity of a sphere fluctuates in time, in the context of Smolukowski’s diffusion-controlled rate processes. Interest in this problem was stimulated by some experiments on biomolecular rate processes in the 1970s. The model under discussion here was studied by a number of investigators in the 1980s, and interest is renewed by the discovery of resonant activation in the 1990s. We find that the simplest gated reaction process does not exhibit features characteristic of resonant activation, although some interesting nonequilibrium correlations may have a quantitative effect in some situations. We speculate on the possible appearance of resonant activation phenomena in related processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2316 (1992).

    ADS  Google Scholar 

  2. H.A. Kramers, Physica 7, 284 (1940).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. U. ZĂĽrcher, C.R. Doering, Phys. Rev. E 47, 3862 (1993).

    Article  ADS  Google Scholar 

  4. C. Van den Broeck, Phys. Rev. E 47, 4579 (1993).

    Article  ADS  Google Scholar 

  5. M. Bier, D. Astumian, Phys. Rev. Lett. 71, 1649 (1993).

    Article  ADS  Google Scholar 

  6. P. Pechukas, P. Hänggi, Phys. Rev. Lett. 73, 2772 (1994).

    Article  ADS  Google Scholar 

  7. L. Gammaitoni, F. Marchesoni, E. Manichella-Saetta, S. Santucci, Phys. Rev. E 49, 4878 (1994).

    Article  ADS  Google Scholar 

  8. J.J. Brey, J. Casado-Pascual, Phys. Rev. E 50, 116 (1994).

    Article  ADS  Google Scholar 

  9. P. Reimann, Phys. Rev. Lett. 74, 4576 (1995).

    Article  ADS  Google Scholar 

  10. I. Iwaniszewski, Phys. Rev. E 54, 3173 (1996).

    Article  ADS  Google Scholar 

  11. P. Reimann, T. Elston, Phys. Rev. Lett. 77, 5328 (1997).

    Article  ADS  Google Scholar 

  12. R.N. Mantegna, B. Spagnolo, J. Phys. IV 8, 247 (1998).

    Article  Google Scholar 

  13. R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 84, 3025 (2000).

    Article  ADS  Google Scholar 

  14. See, for example, the discussions and references in (a) D.L. Stein, R.G. Palmer, J.L. van Hemmen, C.R. Doering, Phys. Lett. A 136, 353 (1989); D.L. Stein et al, J. Phys. A 23, L203 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  15. For an up-to-date overview, see H. Frauenfelder, P.G. Wolynes, R.H. Austin, Rev. Mod. Phys. 71, S149 (1999).

    Article  Google Scholar 

  16. R.H. Austin et al, Biochemistry 14, 5355 (1975).

    Article  Google Scholar 

  17. D. Beece et al, Biochemistry 19, 5147 (1980).

    Article  Google Scholar 

  18. J.A. McCammon, S.H. Northrop, Nature 293, 316 (1981).

    Article  ADS  Google Scholar 

  19. A. Szabo, D. Shoup, S.H. Northrup, J.A. McCammon, J. Chem. Phys. 77, 4484 (1982).

    Article  ADS  Google Scholar 

  20. B. Goldstein, R. Griego, C. Wofsy, Biophys. J. 46, 573 (1984).

    Article  Google Scholar 

  21. M.v. Smoluchowski, Ann. Physik 48, 1103 (1915).

    ADS  Google Scholar 

  22. M.v. Smoluchowski, Z. physik. Chem. 92, 129 (1917).

    Google Scholar 

  23. For a “modern” review of Smoluchowski’s theory, see, for example, F.C. Collins, G.E. Kimball, J. Colloid Sci. 4, 425 (1949).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doering, C.R. (2000). Effect of Boundary Condition Fluctuations on Smoluchowski Reaction Rates. In: Freund, J.A., Pöschel, T. (eds) Stochastic Processes in Physics, Chemistry, and Biology. Lecture Notes in Physics, vol 557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45396-2_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-45396-2_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41074-4

  • Online ISBN: 978-3-540-45396-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics