Skip to main content

Hydrogel-Based Colloidal Polymeric System for Protein and Drug Delivery: Physical and Chemical Characterization, Permeability Control and Applications

  • Chapter
  • First Online:
Filled Elastomers Drug Delivery Systems

Part of the book series: Advances in Polymer Science ((POLYMER,volume 160))

Abstract

The use of polymeric nanoparticles as drug carriers is receiving an increasing amount of attention both in academia and industry. The development of suitable delivery systems for protein drugs with high molecular weights and short half-lives is of current interest. In addition, nanoparticles have a number of potential applications in drug and vaccine delivery as well as gene therapy applications. This article features a new production technology for nanoparticles comprised of multicomponent polymeric complexes that are candidates for delivery vehicles of biological molecules such as proteins and drugs. Materials science theory and practice provide the basis for the development of highly compacted structures that are insoluble in water and buffered media. Biocompatible and mostly natural polymers are fabricated into thermodynamically stable nanoparticles, in the absence of organic solvents, using two types of processing: batch and continuous. Careful choice of construction materials and the superposition of several interacting principles during their production allow for the customization of the physicochemical properties of the structures. Among the typical polymers used to assemble nanoparticles, different polysaccharides, natural amines and polyamines were investigated. The entrapped substances tested included proteins, antigens and small drug molecules. The size and charge of nanoparticles is considered to be of primary importance for application in biological systems. Detailed experiments in batch and continuous systems allowed time-dependent stoichiometric characterization of the production process and an understanding of fundamental assembly principles of such supramolecular structures. Continuous-flow production is shown to provide more consistent data in terms of product quality and consistency, with further possibilities of process development and commercialization. To control permeability, polydextran aldehyde, incorporated into the particle core, was used to enable physiologic cross-linking and long-term retention of substances that would otherwise rapidly leak out of the nanoparticles. Results of cross-linking experiments clearly demonstrated that the release rate could be substantially reduced, depending on the degree of cross-linking. For vaccine antigen delivery tests we measured an antibody production following subcutaneous and oral administration. The data indicated that only the cross-linked antigen was immunogenic when the oral route of administration was used. The data presented in this paper address primarily the utility of nanoparticulates for oral delivery of vaccine antigen. This novel technology is extensively discussed in contrast to other technologies, primarily water- and organic solvent-based. The usefulness is demonstrated using several examples, evaluating protein and small drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buckley A, Davidson JM, Kamerath CD, Wolt TB, Woodward SC (1985) Sustained release of epidermal growth factor accelerates wound repair. Proc Natl Acad Sci USA 82:7340–7344

    Article  CAS  Google Scholar 

  2. Vauthier-Holtzscherer C, Benabbou S, Spenlehauer G, Veillard M, Couvreur P (1991) Methodology for the preparation of ultra-dispersed polymer systems. STP Pharma Sci 2:109–116

    Google Scholar 

  3. Couvreur P, Roland M, Speiser P (1982) Biodegradable submicroscopic particles containing a biologically active substances and compositions containing them. US Patent 4,329,332

    Google Scholar 

  4. Cruz T, Gaspar R, Donato A, Lopes C (1997) Interaction between polyalkylcyanoacrylate nanoparticles and peritoneal macrophages: MTT metabolism, NBT reduction, and NO production. Pharm Res 14:73–79

    Article  CAS  Google Scholar 

  5. Gallo JM, Hung CT, Perrier DG (1984) Analysis of albumin microsphere preparation. Int J Pharm 22:63–74

    CAS  Google Scholar 

  6. Marty JJ, Openheim RC, Speiser P (1978) Nanoparticles. A new colloidal drug delivery system. Pharm Acta Helv 53:17–23

    CAS  Google Scholar 

  7. Ibrahim H, Gurny R, Bindschaedler C, Doelker E, Buri P (1990) A new technology for preparation of drug monodispersed systems for controlled release to the eye. Proc Int Symp Contr Rel Bioact Mat, Controlled Release Society 17:303–304

    Google Scholar 

  8. Fessi H, Puisieux F, Devissaguet J-P, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4

    CAS  Google Scholar 

  9. Alonso MJ (1998) Nanoparticulate drug carrier technology. In: Cohen S, H. Bernstein H (eds). Microparticulate Systems for the Delivery of Proteins and Vaccines. New York: Marcel Dekker, pp 203–242

    Google Scholar 

  10. Allen C, Eisenberg A, Maysinger D (1999a) Copolymer drug carriers: Conjugates, micelles and microspheres. STP Pharma Sci 9:139–151

    CAS  Google Scholar 

  11. Allen C, Maysinger D, Eisenberg A (1999b) Nano-engineering block copolymer aggregates for drug delivery. Coll Surf Interfaces 16 B:3–27

    Article  Google Scholar 

  12. Nakache E, Poulain N, Candau F, Orecchioni A-M, Irache JM (2000) Biopolymer and polymer nanoparticles and their biomedical application. In: Nalwa HS (ed), Handbook of Nanostructured Materials and Nanotechnology. Vol 5: Organics, Polymers, and Biological Materials. New York: Academic Press, pp 577–635

    Chapter  Google Scholar 

  13. Fitch RM (1997) Polymer Colloids: A Comprehensive Introduction. San Diego: Academic Press, pp 81–98

    Google Scholar 

  14. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997a) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polymer Sci 63:125–132

    Article  CAS  Google Scholar 

  15. Calvo P, Remunan-Lopez, Vila-Jato JL, Alonso MH (1997b) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharmaceut Res 14:1431–1436

    Article  CAS  Google Scholar 

  16. Prokop A (1999) Drug delivery system exhibiting permeability control. US patent pending; also PCT application WO9918934A1

    Google Scholar 

  17. Deacon S (1976) Assay of gentamicin in cerebrospinal fluid. J Clin Pathol 29:749–751

    Article  CAS  Google Scholar 

  18. Prokop A, Holland CA, Kozlov E, Moore B, Tanner RD (2001) Water-based nanoparticulate polymeric system for protein delivery. Biotechnol Bioeng, 15:228–232.

    Article  Google Scholar 

  19. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein bicinchoninic acid [published erratum appears in Anal. Biochem 163:279 (1987)]. Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  20. Fagnani R, Hagan MS, Bartholomew R (1990) Reduction of immunogenicity by covalent modification of murine and rabbit immunoglobulins with oxidized dextrans of low molecular weight. Cancer Res 50:3638–3645

    CAS  Google Scholar 

  21. Cheng H, Rudick MJ (1991) A membrane blotting method for following the time course of protein radioiodination background references using IODO-BEADS, Anal Biochem 198:191–193

    Article  CAS  Google Scholar 

  22. Prokop A, Hunkeler DJ, DiMari S, Haralson MA, Wang TG (1998) Water soluble polymers for immunoisolation I: Complex coacervation and cytotoxicity. Advan Polymer Sci 136:1–52

    Article  CAS  Google Scholar 

  23. Kabanov AV, Kabanov VA (1995) DNA complexes with polycations for the delivery of genetic material into cells. Bioconj Chem 6:7–20

    Article  CAS  Google Scholar 

  24. Krone V, Magerstadt M, Walch A, Groner A, Hoffman D (1997) Pharmacological composition containing polyelectrolyte complexes in nanoparticulate form and at least one active agent. US Patent 5,700,459

    Google Scholar 

  25. Prokop A (1997) Micro-particulate and nano-particulate polymeric delivery system. US patent pending, 1997; also PCT application WO9918934A1

    Google Scholar 

  26. Janes KA, Calvo P, Alonso MJ (2001a) Polysaccharide colloidal particles as delivery systems for macromolecules. Advan Drug Delivery Revs 47:83–97

    Article  CAS  Google Scholar 

  27. Bodmeier R, Chen H, Paeratakul O (1989) A novel approach to the oral delivery of micro-or nanoparticles. Pharm Res 6:413–417

    Article  CAS  Google Scholar 

  28. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P (1993) Development of a new drug carrier made from alginate. J Pharm Sci 82:912–917

    Article  CAS  Google Scholar 

  29. Gribbonet EM, Hatley RHM, Gard T, Blair J, Kampinga J, Roser BJ (1996) Trehalose and novel hydrophobic sugar glasses in drug stabilization and delivery. In: Karsa DR, Stephenson RA (eds), Chemical Aspects of Drug Delivery Systems. Cambridge: The Royal Society of Chemistry, pp 138–145

    Chapter  Google Scholar 

  30. Fernandez-Urrusuno R, Romani D, Calvo P, Vila-Jato JL, Alonso MJ (1999) Development of a freeze-dried formulation of insulin-loaded chitosan nanoparticles intended for nasal administration. S.T.P. Pharma Sci 9:429–436

    CAS  Google Scholar 

  31. Prokop A, Davidson JM, Dikov MM, Williams P (1999) Polymeric encapsulation system promoting angiogenesis. US patent pending; also PCT application WO0064954 A

    Google Scholar 

  32. Prokop A, Kozlov E, Newman GW, Newman MJ (2002) Water-based nanoparticulate polymeric system for protein delivery: Permeability control and vaccine application. Biotechnol Bioeng, accepted

    Google Scholar 

  33. Alonso MJ (1998) Nanoparticulate drug carrier technology. In: Cohen S, H. Bernstein H (eds), Microparticulate Systems for the Delivery of Proteins and Vaccines. New York: Marcel Dekker, pp 203–242

    Google Scholar 

  34. Decher G (1997) Fuzzy nanoassemblies: Towards layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  35. Anonymous (1995) NSF in a Changing World. The National Science Foundation’s Strategic Plan. NSF 95-24. http://www.nsf.gov/nsf/nsfpub/straplan/contents.htm

  36. Anonymous (1999) Bioengineering Nanotechnology Initiative.

    Google Scholar 

  37. Williams DRM, Fredrickson GH (1992) Cylindrical micelles in rigid-flexible diblock copolymers, Macromol 25:3561–3568

    CAS  Google Scholar 

  38. Holyst R, Schick M (1992) Correlations in the rigid-flexible diblock copolymer systems. J Chem Phys 96:730–739

    Article  CAS  Google Scholar 

  39. Jayaram B, DiCapua FM, Beveridge DL (1991) A theoretical study of polyelectrolyte effects in protein-DNA interactions: Monte Carlo free energy simulations on the ion atmosphere contribution to the thermodynamics of lambda repressor-operator complex formation. J Am Chem Soc 113:5211–5221

    Article  CAS  Google Scholar 

  40. Webster L, Huglin MB, Robb ID (1997) Complex formation between polyelectrolytes in dilute aqueous solution. Polymer 38:1373–1380

    CAS  Google Scholar 

  41. Dautzenberg H, Hartmann J, Grunewald S, Brand F (1996) Stoichiometry and structure of polyelectrolyte complex particles in diluted solutions. Ber Bunsenges Phys Chem 100:1024–1032

    CAS  Google Scholar 

  42. Tsuchida E, Abe K (1988) Polyelectrolyte complexes. In: Wilson AD, Prosser HJ (eds), Developments in Ionic Polymers-2. London: Elsevier, pp 191–266

    Google Scholar 

  43. Chatterjee SK, Chhabra M, Rajabi FH, Farahani BV (1992) Thermodynamic studies of some copolymer-homopolymer-polyelectrolyte interactions. Polymer 33:3762–3766

    Article  CAS  Google Scholar 

  44. Prokop A, Hunkeler DJ, DiMari S, Haralson MA, Wang TG (1998a) Water soluble polymers for immunoisolation I: Complex coacervation and cytotoxicity, Advan Polymer Sci 136:1–52

    Article  CAS  Google Scholar 

  45. Prokop A, Hunkeler DJ, Wang TG (1998b) Water soluble polymers for immunoisolation II: Evaluation of multicomponent microencapsulation systems. Advan Polymer Sci 136:53–73

    Article  CAS  Google Scholar 

  46. Wang T, Lacik I, Brissova M, Anilkumar AV, Prokop A, Hunkeler D, Green R, Shahrokhi K., Powers AC (1997) A new generation capsule and encapsulation system for immunoi-solation of pancreatic islets. Nature Biotechnol 15:358–362

    Article  CAS  Google Scholar 

  47. Torza S, Mason SG (1970) Three-phase interactions in shear and electrical fields. J Coll Interface Sci 33:67–83

    Article  CAS  Google Scholar 

  48. Pekarek KJ, Jacob JS, Mathiowitz E (1994) Double-walled polymer microspheres for controlled drug release. Nature 367:158–260

    Article  Google Scholar 

  49. Lee JH, Lee HB, Andrade JD (1995) Blood compatibility of polyethylene oxide surfaces. Progr Polymer Sci 20:1043–1079

    Article  CAS  Google Scholar 

  50. Singh M, Brioned M, Ott G, O’Hagan D (2000) Cationic microparticles: A potent delivery system for DNA vaccines. Proc Natl Acad Sci USA 97:811–816

    Article  CAS  Google Scholar 

  51. Altmann KG (1993) Effect of cationization on anti-hapten antibody response in sheep and mice. Immunol Cell Biology 71:517–525

    Article  CAS  Google Scholar 

  52. Schipper NG, Olsson S, Hoogstraate JA, de Boer AG, Varum KM, Artursson P (1997) Chitosans as absorption enhancers for poorly adsorbable drugs 2: Mechanism of absorption enhancement. Pharm Res 14:923–929

    Article  CAS  Google Scholar 

  53. Jung T, Kamm W, Breitenbach A, Kaiserling E, Ziao JX, Kissel T (2000) Biodegradable nanoparticles for oral delivery of peptides: Is there a role for polymers to affect mucosal uptake? Europ J Pharmac Biopharmaceut 50:147–160

    Article  CAS  Google Scholar 

  54. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Rel 73:255–267

    Article  CAS  Google Scholar 

  55. Sussich F, Skopec C, Brady J, Cesaro A (2001) Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal? Carbohydrate Res 334:165–176

    Article  CAS  Google Scholar 

  56. Shimomura M, Sawadaishi T (2001) Bottom-up strategy of materials fabrication: A new trend in nanotechnology of soft materials. Curr Opinion Coll Interf Sci 6:11–16

    Article  CAS  Google Scholar 

  57. Singh M, Shirley B, Bajwa K, Samra E, Hora M, O’Hagan D (2001) Controlled release of recombinant insulin-like growth factor from a novel formulation of polylactide-co-glycolide microparticles. J Control Release 70:21–28

    Article  CAS  Google Scholar 

  58. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–16

    Article  CAS  Google Scholar 

  59. Wesselingh JA, Bollen AM (1997) Multicomponent diffusivities from the free volume theory. Chem Eng Res Des 75(A6):590–602

    Article  CAS  Google Scholar 

  60. Kim C-J, Nujoma YE (1995) Drug release from an erodible drug-polyelectrolyte complex. Europ Polymer J 31:937–940

    Article  CAS  Google Scholar 

  61. Remunan-Lopez C, Bodmeier R (1997) Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. J Control Rel 44:215–225

    Article  CAS  Google Scholar 

  62. Yao K, Peng T, Xu M, Yuan C, Goosen MFA, Zhang Q, Ren L (1994) pH-dependent hydrolysis and drug release of chitosan/polyether interpenetrating polymer network hydrogel. Polymer Int. 34:213–219

    Article  CAS  Google Scholar 

  63. Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Advan Drug Delivery Revs 47:83–97

    Article  CAS  Google Scholar 

  64. Kotov NA (1999) Layer-by-layer self-assembly: The contribution of hydrophobic interactions. NanoStruct Mat 12:789–796

    Article  Google Scholar 

  65. Jaskari T, Vuorio M, Kontturi K, Manzanares JA, Hirvonen J (2001) Ion-exchange fibers and drugs: An equilibrium study. J Control Release 70:219–229

    Article  CAS  Google Scholar 

  66. Ge S-J, Lee T-C (1997) Kinetic significance of the Schiff base reversion in the early-stage Maillard reaction of a phenylalanine-glucose aqueous model system. J Agric Food Chem 45:1619–1623

    Article  CAS  Google Scholar 

  67. Chen S-S, Engel PC (1975) The equilibrium position of the reaction of bovine liver glutamate dehydrogenase with pyridoxal 5’-phosphate. Biochem J 147:351–358

    CAS  Google Scholar 

  68. Baldwin SP, Saltzman WM (1998) Materials for protein delivery in tissue engineering. Advan Drug Del Revs 33:71–86

    Article  CAS  Google Scholar 

  69. Tobio M, Schwendeman SP, Guo Y, McIver J, Langer R, Alonso MJ (2000) Improved immunogenicity of a core-coated tetanus toxoid delivery system. Vaccine 18:618–622

    Article  Google Scholar 

  70. Gomez-Orellana I, Paton DR (1998) Advances in the oral delivery of proteins. Exp Opinion Ther Patents 8:223–234

    Article  CAS  Google Scholar 

  71. Matthews DM (1991) Protein Absorption. Wiley, New York

    Google Scholar 

  72. Woodley JF (1994) Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst 11:61–95

    CAS  Google Scholar 

  73. Jani P, Halbert GN, Landridgge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucose: Quantitation and particle size dependency. J Pharm Pharmacol 42:821–826

    CAS  Google Scholar 

  74. Damgge G, Aprahamian M, Marchais H, Benoit JP, Pinget M (1996) Intestinal absorption of PLGA microspheres in the gut. J Anat 189:491–501

    Google Scholar 

  75. Florence AT (1997) The oral absorption of micro-and nanoparticles: Neither exceptional nor unusual. Pharm Res 14:259–266

    Article  CAS  Google Scholar 

  76. Puchel G, Montisci M-J, Dembri A, Durrer C, Duchene D (1997) Mucoadhesion of colloidal particulate system in the gastro-intestinal tract,. Europ J Pharm Biopharmaceut 44:25–31

    Article  Google Scholar 

  77. Lehr C-M (1994) Bioadhesion technologies for the delivery of peptide and protein drugs to the gastrointestinal tract, Crit Rev Drug Carrier Syst 11:119–160

    CAS  Google Scholar 

  78. Hunt G, Pearney P, Kellaway I (1987) Mucoadhesive polymers in drug delivery systems, In: Johnson P. Lloyd-Jones JG (eds), Drug Delivery Systems. Fundamentals and Techniques. Ellis Horwood, Chichester, pp 180–199

    Google Scholar 

  79. Capron I, Yvon M, Muller G (1996) In vitro gastric stability of carrageenan. Food Hydrocol 10:239–244

    Article  CAS  Google Scholar 

  80. Lavelle EC, Charif S, Thomas NW, Holland J, Davis SS (1995) The importance of gastrointestinal uptake of particles in the design of oral delivery systems. Adv Drug Del Revs 18:5–22

    Article  CAS  Google Scholar 

  81. De Campos AM, Sanchez A, Alonso MJ (2001) Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to ocular surface. Application to cyclosporin A. Int J Pharm 224:159–168

    Article  Google Scholar 

  82. Kaneda Y, Yamamoto Y, Kamada H, Tsunoda S, Tsutsumi Y, Hirano T, Mayumi Y (1998) Antitumor activity of tumor necrosis factor alpha conjugated with divinyl ether and maleic acid anhydride copolymer on solid tumors in mice. Cancer Res 58:290–295

    CAS  Google Scholar 

  83. Pierce GF, Tarpley JE, Janagihara D, Mustoe TA, Fox GM, Thomason A (1992) Platelet-derived growth factor (BB homodimer), transforming growth factor-beta, and basic fibroblast growth factor in dermal wound healing. Neovessel and matrix formation and cessation of repair. Amer J Pathol 140:1375–1388

    CAS  Google Scholar 

  84. Puolakkainen PA, Twardzik DR, Rauchalis JE, Pankey SC, Reed MJ, Gombotz WR (1995) The enhancement in wound healing by transforming growth factor β1 (TGFβ1) depends on the topical delivery system. J Surg Res 58:321–329

    Article  CAS  Google Scholar 

  85. Couvreur P, Dubernet C, Puisieux F (1995) Controlled drug-delivery with nanoparticles. Current possibilities and future trends. Europ J Pharm Biopharm 41:2–13

    CAS  Google Scholar 

  86. Capello J, Crissman JW, Crissman M, Ferrari FA, Textor G, Wallis O, Whitledge JR, Zhou X, Burman D, Aukerman L, Stedronsky ER (1998) In-situ self-assembling polymer gel systems for administration, delivery, and release of drugs. J Control Release 53:105–117

    Article  Google Scholar 

  87. Leon EJ, Verma N, Zhang S, Lauffenburger DA, Kamm RD (1998) Mechanical properties of a self-assembling oligopeptide matrix. J Biomat Sci Polymer Edn 9:297–312

    Article  CAS  Google Scholar 

  88. Katayose S, Kataoka K (1997) Water-soluble polyanion complex associates of DNA and poly(ethylene glycol)-poly(l-lysine) block copolymer. Bioconjugate Chem 8:702–707

    Article  CAS  Google Scholar 

  89. Aynie IC, Vauthier C, Fattal E, Foulquier M, Couvreur P (1998) Alginate nanoparticles as a novel carrier for antisense oligonucleotide. In: Diederichs JE, Muler R (eds), Future Strategies of Drug Delivery with Particulate Systems. Stuttgart: Medipharm Scientific Publisher, pp 5–10

    Google Scholar 

  90. Tokumitsu H, Ichikawa H, Fukumori Y (1999) Chitosan-gadopenteic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: Preparation by novel emulsion-droplet coalescence technique and characterization. Pharm Res 16:1839–1835

    Article  Google Scholar 

  91. Jung T, Breitenbach A, Kissel T (2000) Sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) facilitate the preparation of small negatively charged biode-gradable nanospheres for protein delivery. J Control Rel 67:157–169

    Article  CAS  Google Scholar 

  92. Gaur U, Sahoo SK, De TK, Ghosh P, Maitra A, Ghosh PK (2000) Biodistribution of fluo-resceinated dextran using novel nanoparticles evading reticuloendothelial system. Int J Pharm 202:1–10

    Article  CAS  Google Scholar 

  93. Weber C, Coester C, Kreuter J, Langer K (2000) Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm 194:91–102

    Article  CAS  Google Scholar 

  94. Zhang X, Burt HM, VonHoff D, Dexter D, Mangold G, Degen D, Oktaba AM, Hunter WL (1997) An investigation of the antitumor activity and biodistribution of polymeric micellar paclitaxel. Cancer Chemother Pharmacol 40:81–86

    Article  CAS  Google Scholar 

  95. Yokoyama M, Fukushima S, Uehara R, Okamoto K, Kataoka A, Sakurai Y, Ikano T (1998) Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Control Release 50:79–92

    Article  CAS  Google Scholar 

  96. Cleland JL, Daugherty A, Mrsny R (2001) Emerging protein delivery methods. Curr Opinion Biotechnol 12:212–219

    Article  CAS  Google Scholar 

  97. Breimer DD (1998) Future challenges for drug delivery research. Advan Drug Del Revs 33:265–268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prokop, A., Kozlov, E., Carlesso, G., Davidson, J.M. (2002). Hydrogel-Based Colloidal Polymeric System for Protein and Drug Delivery: Physical and Chemical Characterization, Permeability Control and Applications. In: Filled Elastomers Drug Delivery Systems. Advances in Polymer Science, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45362-8_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45362-8_3

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43052-0

  • Online ISBN: 978-3-540-45362-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics