Abstract
Multi-objective evolutionary algorithms which use non-dominated sorting and sharing have been mainly criticized for their (i) O(MN 3) computational complexity (where M is the number of objectives and N is the population size), (ii) non-elitism approach, and (iii) the need for specifying a sharing parameter. In this paper, we suggest a non-dominated sorting based multi-objective evolutionary algorithm (we called it the Non-dominated Sorting GA-II or NSGA-II) which alleviates all the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN 2) computational complexity is presented. Second, a selection operator is presented which creates a mating pool by combining the parent and child populations and selecting the best (with respect to fitness and spread) N solutions. Simulation results on five difficult test problems show that the proposed NSGA-II, in most problems, is able to find much better spread of solutions and better convergence near the true Pareto-optimal front compared to PAES and SPEA—two other elitist multi-objective EAs which pay special attention towards creating a diverse Pareto-optimal front. Because of NSGA-II’s low computational requirements, elitist approach, and parameter-less sharing approach, NSGA-II should find increasing applications in the years to come.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deb, K. (1999) Multi-objective genetic algorithms: Problem difficulties and construction of test Functions. Evolutionary Computation, 7(3), 205–230.
Deb, K. and Agrawal, R. B. (1995) Simulated binary crossover for continuous search space. Complex Systems, 9 115–148.
Fonseca, C. M. and Fleming, P. J. (1993) Genetic algorithms for multi-objective optimization: Formulation, discussion and generalization. In Forrest, S., editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 416–423, Morgan Kauffman, San Mateo, California.
Fonseca, C. M. and Fleming, P. J. (1998). Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part II: Application example. IEEE Transactions on Systems, Man, and Cybernetics: Part A: Systems and Humans. 38–47.
Horn, J. and Nafploitis, N., and Goldberg, D. E. (1994) A niched Pareto genetic algorithm for multi-objective optimization. In Michalewicz, Z., editor, Proceedings of the First IEEE Conference on Evolutionary Computation, pages 82–87, IEEE Service Center, Piscataway, New Jersey.
Knowles, J. and Corne, D. (1999) The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimisation. Proceedings of the 1999 Congress on Evolutionary Computation, Piscataway: New Jersey: IEEE Service Center, 98–105.
Rudolph, G. (1999) Evolutionary search under partially ordered sets. Technical Report No. CI-67/99, Dortmund: Department of Computer Science/LS11, University of Dortmund, Germany.
Srinivas, N. and Deb, K. (1995) Multi-Objective function optimization using non-dominated sorting genetic algorithms, Evolutionary Computation, 2(3):221–248.
van Veldhuizen, D. and Lamont, G. B. (1998). Multiobjective evolutionary algorithm research: A history and analysis. Report Number TR-98-03. Wright-Patterson AFB, Ohio: Department of Electrical and Computer Engineering, Air Force Institute of Technology.
Zitzler, E., Deb, K., and Thiele, L. (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2). 173–195.
Zitzler, E. and Thiele, L. (1998) Multiobjective optimization using evolutionary algorithms—A comparative case study. In Eiben, A. E., Bäck, T, Schoenauer, M., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature, V, pages 292–301, Springer, Berlin, Germany.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T. (2000). A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In: Schoenauer, M., et al. Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45356-3_83
Download citation
DOI: https://doi.org/10.1007/3-540-45356-3_83
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41056-0
Online ISBN: 978-3-540-45356-7
eBook Packages: Springer Book Archive