Skip to main content

Optimization as Side-Effect of Evolving Allelopathic Diversity

  • Conference paper
Parallel Problem Solving from Nature PPSN VI (PPSN 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1917))

Included in the following conference series:

  • 7284 Accesses

Abstract

Many bacteria carry gene complexes that code for a toxin-antidote pair, e.g. colicin systems. Such gene complexes can be advantageous for its host by killing competitor bacteria while the antidote protects the host. However, in order to evolve a novel and useful toxin first a proper antidote must be evolved. We present a model of bacteria that can express and evolve such allelopathic systems. Although in the model novel types must evolve from existing types we find that nevertheless in general a high diversity of toxins evolves and, as a side-effect thereof, generalized immunity mechanisms.

We interpret the allelopathic systems in terms of an optimization problem: fitness cases are toxins and solutions present (potential) antidotes. As a side-effect of the evolution of allelopathic systems generalized solutions of the optimization task are evolved as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Achtman, A. Mercer, B. Kusecek, A. Pohl, M. Heuzenroeder, W. Aaronson, A. Sutton, and R. P. Silver. Six widespread bacterial clones among Escherichia coli Kl isolates. Infect. Immun., 39:315–335, 1983.

    Google Scholar 

  2. David Andre, Forrest H Bennett III, and John R. Koza. Evolution of intricate long-distance communication signals in cellular automata using genetic programming. In Artificial Life V: Proceedings of the Fifth International Workshop on the Synthesis and Simulation of Living Systems, volume 1, Nara, Japan, 16–18 May 1996. MIT Press.

    Google Scholar 

  3. James P. Crutchfield and Melanie Mitchell. The evolution of emergent computation. Proceedings of the National Academy of Sciences, 92:10742–10746, 1995.

    Article  MATH  Google Scholar 

  4. D. L. Haiti and D. E. Dykhuizen. The population genetics of Escherichia coli. Annu. Rev. Genet., 18:31–68, 1984.

    Article  Google Scholar 

  5. Wim Hordijk, James P. Crutchfield, and Melanie Mitchell. Lecture notes in computer science. In PPSN-V, volume 1498, pages 613–622, 1998.

    Google Scholar 

  6. Hugues Juillé and Jordan B. Pollack. Coevolving the ideal trainer: Application to the discovery of cellular automata rules. In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hi-toshi Iba, and Rick Riolo, editors, Genetic Programming 1998: Proceedings of the Third Annual Conference, pages 519–527, University of Wisconsin, Madison, Wisconsin, USA, 22–25 July 1998. Morgan Kaufmann.

    Google Scholar 

  7. J. Konisky. Colicins and other bacteriocins with established modes of action. Annu. Rev. Microbiol., 36:125–144, 1982.

    Article  Google Scholar 

  8. Mark Land and Richard K. Belew. No perfect two-state cellular automata for density classification exists. Physical Review Letters, 74(25):5148–5150, June 19 1995.

    Article  Google Scholar 

  9. Melanie Mitchell, James P. Crutchfield, and Rajarshi Das. Evolving cellular automata with genetic algorithms: A review of recent work. In Proceedings of the First International Conference on Evolutionary Computation and its Applications (EvCA’96), 1996.

    Google Scholar 

  10. Melanie Mitchell, James P. Crutchfield, and Peter T. Hraber. Evolving cellular automata to perform computations: Mechanisms and impediments. Physica D, 75:361–391, 1994. SFI Working Paper 93-11-071.

    Article  MATH  Google Scholar 

  11. Melanie Mitchell, Peter T. Hraber, and James P. Crutchfield. Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems, 7:89–130, 1993.

    MATH  Google Scholar 

  12. Ludo Pagie. Information integration in evolutionary processes. PhD thesis, Bioinformatics group, Utrecht University, 1999.

    Google Scholar 

  13. Ludo Pagie and Paulien Hogeweg. Evolutionary consequences of coevolving targets. Evolutionary Computation, 5(4):401–418, 1997.

    Google Scholar 

  14. Ludo Pagie and Paulien Hogeweg. Colicin Diversity: a Result of Eco-evolutionary Dynamics. J. Theor. Biol., 196:251–261, 1999.

    Article  Google Scholar 

  15. Ludo Pagie and Paulien Hogeweg. Information integration and red queen dynamics in coevolutionary optimization. In Proceedings of Congress on Evolutionary Computation, 2000.

    Google Scholar 

  16. Jan Paredis. Coevolving cellular automata: be aware of the red queen! In T. Baeck, editor, Proceedings of the 7th Int. Conference on Genetic Algorithms (ICGA 97), pages 393–400, 1997.

    Google Scholar 

  17. A. P. Pugsley. The ins and outs of colicins. Part II. Lethal action, immunity and ecological implications. Microbiol. Sci., 1:203–205, 1984.

    Google Scholar 

  18. M. A. Riley. Molecular mechanisms of colicin evolution. Mol. Biol. Evol., 10:1380–1395, 1993.

    Google Scholar 

  19. M. A. Riley and D. M. Gordon. A survey of Col plasmids in natural isolates of Escherichia coli and an investigation into the stability of Col-plasmid lineages. J. Gen. Microbiol., 138:1345–1352, 1992.

    Google Scholar 

  20. Y. Tan and M. A. Riley. Rapid invasion by colicinogenic Escherichia coli with novel immunity functions. Microbiology., 142:2175–2180, 1996.

    Article  Google Scholar 

  21. Justin Werfel, Melanie Mitchell, and James P. Crutchfield. Resource sharing and coevolu-tion in evolving cellular automata. Submitted to IEEE Trans. Evol. Comp., 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludo Pagie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pagie, L., Hogeweg, P. (2000). Optimization as Side-Effect of Evolving Allelopathic Diversity. In: Schoenauer, M., et al. Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45356-3_78

Download citation

  • DOI: https://doi.org/10.1007/3-540-45356-3_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41056-0

  • Online ISBN: 978-3-540-45356-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics