Genetic Programming Bloat without Semantics

  • W. B. Langdon
  • W. Banzhaf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1917)

Abstract

To investigate the fundamental causes of bloat, six artificial random binary tree search spaces are presented. Fitness is given by program syntax (the genetic programming genotype). GP populations are evolved on both random problems and problems with “building blocks”. These are compared to problems with explicit ineffective code (introns, junk code, inviable code). Our results suggest the entropy random walk explanation of bloat remains viable. The hard building block problem might be used in further studies, e.g. of standard subtree crossover.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee Altenberg. Emergent phenomena in genetic programming. In A. V. Sebald and L. J. Fogel, editors, Evolutionary Programming-Proceedings of the Third Annual Conference, pages 233–241. World Scientific Publishing, 1994.Google Scholar
  2. 2.
    Peter J. Angeline. Subtree crossover: Building block engine or macromutation? In John R. Koza et. al., editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 9–17, 13–16 July 1997. Morgan Kaufmann.Google Scholar
  3. 3.
    Peter J. Angeline. Genetic programming and emergent intelligence. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 4. MIT, 1994.Google Scholar
  4. 4.
    Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic Programming-An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, dpunkt.verlag, January 1998.Google Scholar
  5. 5.
    W. Banzhaf, and W. B. Langdon. Some considerations on the reason for bloat. In preparation.Google Scholar
  6. 6.
    Tobias Blickle. Evolving compact solutions in genetic programming: A case study. In Hans-Michael Voigt et. al., editors, Parallel Problem Solving From Nature IV, volume 1141 of LNCS, pages 564–573, 22–26 September 1996. Springer-Verlag.CrossRefGoogle Scholar
  7. 7.
    Kumar Chellapilla. Evolving computer programs without subtree crossover. IEEE Transactions on Evolutionary Computation, 1(3):209–216, September 1997.CrossRefGoogle Scholar
  8. 8.
    Philippe Flajolet and Andrew Oldyzko. The average height of binary trees and other simple trees. Journal of Computer and System Sciences, 25:171–213, 1982.MATHCrossRefGoogle Scholar
  9. 9.
    Chris Gathercole. An Investigation of Supervised Learning in Genetic Programming. PhD thesis, University of Edinburgh, 1998.Google Scholar
  10. 10.
    David E. Goldberg and Una-May O’Reilly. Where does the good stuff go, and why? In Wolfgang Banzhaf et. al., editors, Proceedings of the First European Workshop on Genetic Programming, LNCS 1391, pp. 16–36, Paris, 14–15 April 1998. Springer.Google Scholar
  11. 11.
    Thomas Haynes. Collective adaptation: The exchange of coding segments. Evolutionary Computation, 6(4):311–338, 1998.Google Scholar
  12. 12.
    Hitoshi Iba, Hugo de Garis, and Taisuke Sato. Genetic programming using a minimum description length principle. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 12, pages 265–284. MIT Press, 1994.Google Scholar
  13. 13.
    John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, 1992.Google Scholar
  14. 14.
    J. R. Koza, D. Andre, F. H Bennett III, and M. Keane. Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufman, 1999.Google Scholar
  15. 15.
    W. B. Langdon. The evolution of size in variable length representations. In 1998 IEEE International Conference on Evolutionary Computation, pages 633–638.Google Scholar
  16. 16.
    W. B. Langdon. Data Structures and Genetic Programming. Kluwer, 1998.Google Scholar
  17. 17.
    W. B. Langdon. Scaling of program tree fitness spaces. Evolutionary Computation, 7(4):399–428, 1999.Google Scholar
  18. 18.
    W. B. Langdon. Size fair and homologous tree genetic programming crossovers. Genetic Programming and Evolvable Machines, 1(1):95–119, 2000.MATHCrossRefGoogle Scholar
  19. 19.
    W. B. Langdon. Quadratic bloat in genetic programming. In Whitley et. al., editors, GECCO’2000, Las Vegas, USA, 8–12 July 2000. Morgan Kaufmann.Google Scholar
  20. 20.
    W. B. Langdon and R. Poli. An analysis of the MAX problem in genetic programming. In John R. Koza et. al., editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 222–230, 1997. Morgan Kaufmann.Google Scholar
  21. 21.
    W. B. Langdon and R. Poli. Fitness causes bloat. In P. K. Chawdhry et. al., editors, Soft Computing in Engineering Design and Manufacturing, pages 13–22. Springer-Verlag London, 23–27 June 1997.Google Scholar
  22. 22.
    W. B. Langdon and R. Poli. Fitness causes bloat: Mutation. In Wolfgang Banzhaf et. al., editors, Proceedings of the First European Workshop on GP, 1998. Springer.Google Scholar
  23. 23.
    W. B. Langdon and R. Poli. Genetic programming bloat with dynamic fitness. In W. Banzhaf et. al., editors, Proc. First European Workshop on GP, 1998. Springer.Google Scholar
  24. 24.
    W. B. Langdon, T. Soule, R. Poli, and J. A. Foster. The evolution of size and shape. In Lee Spector et. al., Advances in Genetic Programming 3, ch. 8. 1999.Google Scholar
  25. 25.
    S. Luke and L. Spector. A revised comparison of crossover and mutation in GP. In J. R. Koza et. al., Genetic Programming 1998, pp. 208–213. Morgan Kaufmann.Google Scholar
  26. 26.
    Nicholas F. McPhee and Justin D. Miller. Accurate replication in genetic programming. In L. Eshelman, editor, (ICGA95), pages 303–309. Morgan Kaufmann.Google Scholar
  27. 27.
    Una-May O’Reilly. An Analysis of Genetic Programming. PhD thesis, Carleton University, Ottawa-Carleton Institute for Computer Science, 1995.Google Scholar
  28. 28.
    Stephen K. Park and Keith W. Miller. Random number generators: Good ones are hard to find. Communications of the ACM, 32(10):1192–1201, Oct 1988.CrossRefGoogle Scholar
  29. 29.
    J._P. Rosca. Analysis of complexity drift in genetic programming. In John R. Koza et. al., editors, Genetic Programming 1997, pp. 286–294. Morgan Kaufmann.Google Scholar
  30. 30.
    Conor Ryan. Pygmies and civil servants. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 11, pages 243–263. MIT Press, 1994.Google Scholar
  31. 31.
    Peter W. H. Smith and Kim Harries. Code growth, explicitly defined introns, and alternative selection schemes. Evolutionary Computation, 6(4):339–360, 1998.Google Scholar
  32. 32.
    Terence Soule. Code Growth in Genetic Programming. PhD thesis, University of Idaho, Moscow, Idaho, USA, 15 May 1998.Google Scholar
  33. 33.
    Walter Alden Tackett. Recombination, Selection, and the Genetic Construction of Computer Programs. PhD thesis, Southern California, Dept. EE Systems, 1994.Google Scholar
  34. 34.
    Byoung-Tak Zhang and Heinz Mühlenbein. Balancing accuracy and parsimony in genetic programming. Evolutionary Computation, 3(1):17–38, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • W. B. Langdon
    • 1
  • W. Banzhaf
    • 2
  1. 1.Computer ScienceUniversity College, LondonLondon
  2. 2.Department of Computer ScienceUniversity of DortmundDortmund

Personalised recommendations