Supramolecular structures formed by phospholiponucleosides: Aggregational properties and molecular recognition

  • Debora Berti
  • Uwe Keiderling
  • Piero Baglioni
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 120)


We report an investigation of the aggregation and molecular recognition properties of phospholi-pid derivatives containing a nucleosidic unit on the phospholipid polar head. Long chain 5′-(1,2-dioleoyl-sn-glycero(3)phospho)-adenosine, 5′-(1,2-dioleoyl-sn-glycero(3)phospho)-uridine, 5′-(1,2-dioleoyl-sn-glycero(3)phospho)-cytidine, and 5′-(1,2-dioleoyl-sn-glycero(3)phospho)-ethenoadenosine phospholipid derivatives form vesicles, while short-chain 5′-(1,2-dioctanoyl-sn-glycero(3)phospho)-adenosine and 5′-(1,2-dioctyl-sn-glycero(3)phospho)-uridine form ellipsoidal micelles. We demonstrated that the arrangement of these novel surfactants in supramolecular devices, driven by hydrophobic interactions, provides the cooperative effect necessary to promote recognition between the complementary bases, though bases are exposed to an aqueous environment. In particular, despite the presence of the aqueous environment, molecular recognition occurs between the phospholiponu-cleoside complementary bases via stacking and hydrogen bonding in a way that strictly resembles the Watson-Crick recognition pattern of DNA and RNA. Generally, hydrogen-bond-mediated interactions are not effective in aqueous systems, since water forms strong hydrogen-bond interactions with host molecules. These findings highlight the importance of phospholipid nucleosidic derivatives as model devices for molecular recognition in biological systems and for biotechnological applications.

Key words

Phospholiponucleosides Molecular recognition Micelles Vesicles Liposomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shuto S, Ueda S, Imamura S, Fukukawa K, Matsuda A, Ueda T (1987) Tetrahedron Lett 28:19CrossRefGoogle Scholar
  2. 2.
    Shuto S, Imamura S, Fukukawa K, Ueda T (1988) Chem Pharm Bull 36:5020Google Scholar
  3. 3.
    Shuto S, Ito H, Ueda S, Imamura S, Fukukawa K, Tsujino M, Matsuda A, Ueda T (1988) Chem Pharm Bull 36:209Google Scholar
  4. 4.
    Tedeschi A, Montillo M, Ferrara F, Nosari A, Mele G, Copia C, Leoni P, Morra E (2000) Eur J Haematol 64:182CrossRefGoogle Scholar
  5. 5.
    Balzarini J, Baba P, Pauwels P, Herdewijn P, de Clerq E (1988) Biochem Pharmacol 37:2847CrossRefGoogle Scholar
  6. 6.
    Richman DD, Fischl MA, Grieco MH, Gottileb MS, Volderling PA, Laskin OL, Leedom JM, Groopman JE, Mildvan D, Hirsch MS, Jackson GG, Durack DT, Nusinoff-Lehrman SN (1987) New Engl J Med 317:192CrossRefGoogle Scholar
  7. 7.
    Saenger W (1984) Principles of nucleic acid structure. Springer, Berlin Heidelberg New York, chapter 6Google Scholar
  8. 8.
    Ts’o, POP (1974) In: Ts’o POP (ed) Basic principles in nucleic acid chemistry. Academic, New York, chapter 6Google Scholar
  9. 9.
    Nowick JS, Cao T, Noronha G (1994) J Am Chem Soc 116:3285CrossRefGoogle Scholar
  10. 10.
    Nowick JS, Chen JS, Noronha G (1993) J Am Chem Soc 115:7636CrossRefGoogle Scholar
  11. 11.
    Nowick JS, Chen JS (1992) J Am Chem Soc 114:1107CrossRefGoogle Scholar
  12. 12.
    Cantor CR, Shimmel PR (1980) Biophysical chemistry. Freeman, San Francisco, chapters 6, 7Google Scholar
  13. 13.
    Berti D, Baldelli Bombelli F, Baglioni P, J Phys Chem BGoogle Scholar
  14. 14.
    Berti D, Franchi L, Baglioni P, Luisi PL (1997) Langmuir 13:3441CrossRefGoogle Scholar
  15. 15.
    Berti D, Pini F, Baglioni P, Teixeira J (1999) J Phys Chem B 103:1738CrossRefGoogle Scholar
  16. 16.
    Mayer LD, Hope, MJ, Cullis PR (1986) Biochim Biophys Acta 858:161CrossRefGoogle Scholar
  17. 17.
    Koppel DE (1972) J Chem Phys 57:4814CrossRefGoogle Scholar
  18. 18.
    The PerkinElmer Corporation (1995) Lambda 900, UV, vis, NIR spectrometer: installation, maintenance and system descriptionGoogle Scholar
  19. 19.
    Lasic DD (1993) Liposomes: from physics to applications. Elsevier, New YorkGoogle Scholar
  20. 20.
    Scheller KH, Sigel H (1983) J Am Chem Soc 105:3005CrossRefGoogle Scholar
  21. 21.
    Inoue T, Yamahata T, Shimozawa R (1992) J Colloid Interface Sci 149:345CrossRefGoogle Scholar
  22. 22.
    Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New YorkGoogle Scholar
  23. 23.
    Israelachvili JN, Mitchell DJ, Ninham BW (1976) J Chem Soc Faraday Trans 72:1525CrossRefGoogle Scholar
  24. 24.
    Berti D, Barbaro P, Bucci I, Baglioni P (1999) J Phys Chem B 103: 4916CrossRefGoogle Scholar
  25. 25.
    Holland PM, Rubingh DN (1992) Mixed surfactant systems. America Chemical Society, Washington, DC, and references thereinGoogle Scholar
  26. 26.
    Berti D, Pini F, Baglioni P, Teixeira J (2000) Physica B 276–278:334CrossRefGoogle Scholar
  27. 27.
    Lin TL, Chen SH, Gabriel NE, Roberts MF (1986) J Am Chem Soc 108:3499CrossRefGoogle Scholar
  28. 28.
    Clarke RJ, Lüpfert C (1999) Biophys J 76:2614Google Scholar
  29. 29.
    Berti D (1996) PhD thesis. Universita’ degli Studi di Firenze, FlorenceGoogle Scholar
  30. 30.
    Berti D, Baglioni P, Barsacchi-Bo G, Bonaccio S, Luisi, PL (1998) J Phys Chem B 102:303CrossRefGoogle Scholar
  31. 31.
    Onda M, Yoshihara K, Koyano H., Ariga K, Kunitake T (1996) 118:8524Google Scholar
  32. 32.
    Berti D, Franchi L, Luisi PL, Baglioni P (1997) Langmuir 13:3438CrossRefGoogle Scholar
  33. 33.
    Keller D (1996) In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. Plenum, New YorkGoogle Scholar
  34. 34.
    Jardetsky O (1964) Biopolym Symp 1:501Google Scholar
  35. 35.
    Schweizer MP, Broom AD, Ts’o POP, Hollis DP (1968) J Am Chem Soc 90:1042CrossRefGoogle Scholar
  36. 36.
    Katz L, Penman S (1966) J Mol Biol 15:220CrossRefGoogle Scholar
  37. 37.
    Newmark RA, Cantor CR(1968) J Am Chem Soc 90:5010CrossRefGoogle Scholar
  38. 38.
    Mitchell PR, Sigel H (1978) Eur J Biochem 88:149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Debora Berti
    • 1
  • Uwe Keiderling
    • 1
    • 2
  • Piero Baglioni
    • 1
  1. 1.Department of Chemistry and CSGIUniversity of FlorenceFlorenceItaly
  2. 2.Hahn-Meitner-Institut BerlinBerlinGermany

Personalised recommendations