A Timed Linda Language

  • Frank S. de Boer
  • Maurizio Gabbrielli
  • Maria Chiara Meo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1906)


We introduce a Timed Linda language (T-Linda) which is obtained by a natural timed interpretation of the usual constructs of the Linda model and by adding a simple primitive which allows one to specify time-outs. Parallel execution of processes follows the scheduling policy of interleaving, however maximal parallelism is assumed for actions depending on time. We define the operational semantics of T-Linda by means of a transition system (a denotational model is defined in [4]).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L Bettini, R. De Nicola, G.-L. Ferrari and R. Pugliese. Interactive Mobile Agents in X-Klaim. In Proc. of the Seventh IEEE International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’98), pp. 110–115, IEEE Computer Society, 1998.Google Scholar
  2. 2.
    F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Timed Concurrent Constraint Language. Information and Computation, 2000. To appear.Google Scholar
  3. 3.
    P. Bremond-Gregoire and I. Lee. A Process Algebra of Communicating Shared Resources with Dense Time and Priorities. Theoretical Computer Science 189, 1997.Google Scholar
  4. 4.
    F. S. de Boer, M. Gabbrielli, and M. C. Meo. A denotational semantics for Timed Linda. Draft.Google Scholar
  5. 5.
    N. Busi, R. Gorrieri, and G. Zavattaro. Process Calculi for Coordination: from Linda to JavaSpaces. Proc. of 8-th International Conference on Algebraic Metodology and Software Technology. Lecture Notes in Computer Science. Springer-Verlag, 2000. To appear.Google Scholar
  6. 6.
    N. Busi, R. Gorrieri and G. Zavattaro. A Process Algebraic View of Linda Coordination Primitives. Theoretical Computer Science, 192(2):167–199, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    R. De Nicola and R. Pugliese. Linda based Applicative and Imperative Process Algebras. To appear in Theoretical Computer Science, 2000.Google Scholar
  8. 8.
    D. Gelernter. Generative communication in Linda. ACM Transcations on Programming Languages and Systems, 70(1): 80–112, 1985.CrossRefzbMATHGoogle Scholar
  9. 9.
    J.F. Groote. Transition system specifications with negative premises. Theoretical Computer Scince, 118: 263–299, 1993.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Hennessy and T. Regan. A temporal process algebra. Information and Computation, 117: 221–239, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    V.A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundation of Concurrent Constraint Programming. In Proc. Eighteenth ACM Symposium on Principles of Programming Languages, pages 333–353. ACM Press, 1991.Google Scholar
  12. 12.
    V.A. Saraswat, R. Jagadeesan, and V. Gupta Timed Default Concurrent Constraint Programming. Journal of Symbolic Computation, 22(5–6):475–520, 1996.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sun Microsystem, Inc. JavaSpaces Specifications, 1998.Google Scholar
  14. 14.
    P. Wyckoff, S.W. McLaughry, T.J. Lehman, and D.A. Ford. TSpaces. IBM Systems Journal, 37(3), 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Frank S. de Boer
    • 1
  • Maurizio Gabbrielli
    • 2
  • Maria Chiara Meo
    • 3
  1. 1.Universiteit UtrechtThe Netherlands
  2. 2.Universitá di UdineItaly
  3. 3.Universitá di L’AquilaItaly

Personalised recommendations